consiructor

MAY 1978
Volume 31 No. 9

Published Monthly (2nd of preceding Month) First Published 1947

Incorporating The Radio Amateur
Editorial and Advertising Offices 57 MAIDA VALE LONDON W9 1 SN

Telaphone 01-286 6141

Telograms
Databux, London

Data Publications Ltd., 1977. Contents may only be reproduced after obtaining prior permission from the Editor. Short abstracts or references are allowable provided acknowledgement of source is given.

Annual Subscription: $£ 6.50$ (U.S.A. and Canada $\$ 12.00$ including postage. Remittances should be made payable to "Data Publications Ltd". Overseas readers pleaṣe pay by cheque or International Money Order.

Technical Queries. We regret that we are unable to answer queries other than those arising from articles appearing in this magazine nor can we advise on modifications to equipment described. We regret that such queries cannot be answered over the telephone; they must be submitted in writing and accompanied by a stamped addressed envelope for reply.

Correspondence should be addressed to the Editor, Advertising Manager, Subscription Manager or the Rublishers as appropriate.

Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

Production.-Web Offset.
REGENERATION V.H.F. RECEIVER
by R. A. Penfold
NEW REPLACEMENT FOR QUARTZ 529
by Michael Lorant
NEWS AND COMMENT 530
ON-OFF SEQUENCE SWITCH

- Suggested Circuit by G. A. French
WINDSCREEN WASHER LEVEL MONITOR 534 by J. H. Telford
HIGH, GAIN DISC TV ANTENNA
by Ivor N. Nathan
TELEPHONE AMPLIFIER by A. P. Roberts 544
RESISTOR TOLERANCES 549
- Notes for Newcomers by R. Webber
LOOKING INSIDE SEMICONDUCTOR DIODES 551 by Victor Emel

by Victor Emel
SHORT WAVE NEWS - For DX Listeners
by Frank A. Baldwin
QSL CARD DISPLAYING by T. F. Weatherley 554
THE "MAINS MICRO-AMP" - Part 1 556
by Sir Douglas Hall, K.C.M.G.

by Sir Douglas Hall, K.C.M.G.
SINGLE-POLE DISPLAY SWITCH
- In Your Workshop

NGLE-POLE DISPLAY SWITCH
RADIO TOPICS by Recorder567
TRADE NEWS569
ELECTRONICS DATA No. 33iii
(For The Beginner - Internal Resistance)

PAKS-PARTS-AUDIO MODULES

PANEL METERS

4" RANGE		
Value	No.	Price
0-501A	1302	f4.50
- $0.500 \mu \mathrm{~A}$	$\begin{array}{r}1303 \\ 1304 \\ \hline\end{array}$	£4.60
$0-1 \mathrm{~mA}$	1305	E6.00
0-50V	1306	E6.00
2' RANGE		
Sjze $2 \frac{1}{4} \times 1 \frac{1}{\frac{1}{4} \times 1 \frac{1}{2}}$		
Value.		Price
$0.50 \mu \mathrm{~A}$	1307	c3. 60
$0-100 \mu A_{1}$	1308	E3. 60
0.500 kA	1309	¢3.60
0.1 mía	1310	¢3.60
$0-60 \mathrm{~V}$	1311	¢3.60
MR2P TYPE		
Slize $42 \times 42 \times 30 \mathrm{~mm}$		
		Price
0-50piA	1313	¢4.80
0-1mA	1315	¢3.20

EDGEWISE
Size $3 \frac{1}{2} \times 1$ lin $^{2} \times 2 \ddagger$
Cut out 2 fin $^{\times 1} \times 1$

MINIATURE BALANCE/ TUNING METER
Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity $100 / 0 / 100 \mathrm{~mA}$
No.
$13 \uparrow 8$
Price
E 1.96
BALANCE/TUNING
Size $45 \times 22 \times 34 \mathrm{~mm}$
Sensitivity $100 / 0 / 100 \mu \mathrm{~A}$
No.
1319
Price
$\mathbf{£ 2 . 0 0}$
MIN. LEVEL METER
Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity $200 \mu \mathrm{~A}$
No.
1320
Price
E1.95

Vu METER

Size $40 \times 40 \times 29 \mathrm{~mm}$
Sensitivity $130 \mu \mathrm{~A}$

$\begin{array}{c}\text { No } \\ 1321\end{array}$	$\begin{array}{c}\text { Price } \\ \text { E2.00 }\end{array}$

MINI
mutr-

METER

Size $60 \times 24 \times 90 \mathrm{~mm}$
Sensitivity 1000 ohms N
 DC CURRENTO: 1. 10 OMA DC CURRENT $0-1-10$
Resistance $0-150 \mathrm{k} \Omega$ ${ }_{132}{ }_{1}$

Price
E5.95
P\&P

Postage and Packing add 25p
unless otherwise shown. Add extra
for airmail. Minimum order $£ 1$.
TRANSISTORS

74 SERIES TTLIC'S

FULL SPECIFICATION GUARANTEED ALL FAMOUS MANUFACTURERS

Type	Price										
7400	0.14	7409	0.15	7441	0.84	7482	0.85	7493	0.40	74122	0.50
7401	0.14	7410	0.14	7442	0.84	7483	0.95	7494	0.88	74123	0.70
7402	0.15	7411	0.23	7445	0.90	7484	0.98	7495	0.75	74141	0.80
7403	0.15	7412	0.23	7446	0.90	7485	1.20	7496	0.80	74154	1.30
7404	0.15	7413	0.27	7447	0.78	7486	0.30	74100	1.00	74180	1.10
7405	0.15	7414	0.58	7448	0.80	7489	2.90	74110	0.50	74181	2.00
7406	0.30	7416	0.28	7475	0.48	7490	0.42	74118	0.90	74190	1.50
7407	0.30	7417	0.28	7480	0.50	7491	0.75	74119	1.85	74198	2.00
7408	0.16	7440	0.15	7481	0.95	7492	0.45	74129	0.30	74199	1.90
CMOS IC'S											
Type	Price	Typo	Price								
CD4000	¢0.15	CD4012	f0. 20	CD 4022	$\underline{50.90}$	CO4031	E2. 20	CD4046	£1.30	CD4071	f0. 23
CD4001	f0.18	CD4013	f0. 52	CD4023	¢0. 20	CD4035	£1.30	CD4047	£1.10	CD4072	¢0.23
CO4002	£0.18	CD4015	£0.98	CD4024	¢0.80	CD4037	¢0.95	CD4049	c0.55	CD4081	£0.20
CD 4006	£0.98	CD4016	£0.50	CD4025	$\underline{6} \mathbf{8} 20$	CD4040	¢0.95	CD4050	¢0.55	CD4082	£0.23
CD4007	£0.18	CD4017	¢0.98	CD4026	£1.70	CD4041	¢0.82	CD 4054	f1.10	CD4510	£1.30
CD4008	£0.98	CD4016	£1.00	CD4027	¢0.60	CD 4042	£0.82	CD4055	£1.40	CD4311	£1.60
CD4009	£0.58	CD4019	£0.55	CD4028	£0.98	CD4043	¢0.98	CD4056	£1.35	CD4516	£1.40
CD4010	£0.58	CD4020	£1.10	CD4029	¢1.15	CD4044	£0.94	CO4069	£0.40	CD4318	£1.25
CD4011	£0.20	CD4021	£0.98	CD4030	¢0.65	CD4045	£1.40	CD4070	$£ 0.40$	CD4520	£1.25

LINEARIC'S

DEPT, RC5 P.O. BOX 6, WARE, HERTS. SHOP AT: 18 BALDOCK ST., WARE, HERTS.

SEMICONDUCTORS - COMPONENTS

BABANI BOOK OFFER

Purchase books to the value of 25.00 from

THYRISTORS

$\begin{aligned} & 222 \\ & 223 \\ & 224 \\ & 225 \\ & 226 \\ & \text { RCC } \end{aligned}$	Sold State Short Wave Receivers for Beginners 50 Project: Uxing IC CA3130 50 CMOS IC Projecs A Praceleal Introduction 20 Oifistal IC's How to Bulld Advanced Short Wave Receivers Reviator Colour Code Dise Calculator						
THYRISTORS							
800 mA T018 Case			7 AMP TO48 CAsE				
Volts	No	Prices	Volts	No	Price		
10	ThY600/10	¢0.15		thy7a 50	¢0.48		
20	THY600/20	c0. 10	100	thy7alioo	c0. s^{1}		
30	thy $600 / 30$	co. 20	200	THY7A200	¢0.87		
50	THY600/80	c0. 22	400	thyla/400	¢0.62		
100	THY800/100	c0. 26	600	thylanboo	¢0.78		
200	THY600/200	c0.38	600	THY7A8800	¢0.92		
400	THY600/400	c0. 44					
1 amp tob case			10 AMP TO48 CASE				
			Volis	No	Price		
Volis	No.	Price	50	thyionso	c0. 51		
50	ThY1A/50	¢0.26	100	THY10A 100	C0. 67		
100	THYIAN100	c0.28	200	ThY10a/200	c0.62		
200	THY1A200	c0.32	400	THY 10 A400	C0.71		
400	THYIA/400	¢0.38	600	THY10A/600	C0.99		
600	THYIN800 ¢0.68		800	thy IOA/800	E1. 22		
800							
3 AMP TOBE CASE			Volls 18 AMP TO 48 CASE Price				
			$\begin{array}{r} 50 \\ 100 \end{array}$		Price		
			THY16A60 THY15A100	c0.64			
Volts	No.	ce		C0.68			
50	THY3A/50	co.28	200400	THY16A100	¢0. 62		
100	THY3A 100	c0.30		THY 16 A/400THY16A600THY/	C0.77		
200	THY3A/200	¢0.33			c0.90		
400	THY3A400	c0. 42	800	THYIGA800	£1.39		
$\begin{aligned} & 600 \\ & 800 \end{aligned}$	THY3A600	c0.50	30 AMP TOM4 CASE				
	THY3A/800	c0.65					
			$\begin{aligned} & \text { Voirs } \\ & 50 \\ & 100 \end{aligned}$	No THY30A/50	Pilce		
5 AMP TOBE CASE				THY30A100			
volts	No. ${ }_{\text {THY5A/SU }}$	Price	400	THY30A/400THY 30 A600	¢1.79		
50		C0.36	600		c3.50		
100	THY5A 100	c0.40		THY30A600			
200	THY5A/200				Price		
400	THY5A/400	¢0. 57					
600	THY5A'B00	60.69	BT101'500\%		C0,80		
800		c0.81	$\begin{aligned} & \text { ET102 } 1500 \mathrm{R} \\ & \text { BT106 } \end{aligned}$		¢0. 80		
			BT 107		${ }_{60.93}$		
6 AMP TO220 CASE			BT108		C0.98		
	No. ${ }_{\text {THY5A/400P }}$		${ }_{2}$ 2N3228		¢0.70		
Volls		Price			¢0.77		
400		c0.57	BTX30/50,		¢0.33		
800	THY5A600P	c0.69	BTx $30 / 400 \mathrm{~L}$C1064		c0.40		
800	THY5A8800	c0.81			¢0.60		

SUPER UNTESTED PAKS

Pak				
No.	Oty.		No.	Price
U50	100	Germ. gold bonded OA47 diode	16130	c0.60
$\cup 51$	150	Germ. OA70/8 1 diode	16131	c0.60
452	100	Silicon diodes 200 ma Oa 200	16132	c0.60
U5,3	150	Diodes 75mA 1N4148	16133	c0.60
U54	50	Sil rect top hat 750 ma	16134	c.0.60
U55	20	Sil rect stud iype 3 amo	16135	c0,60
U56	50	400 mW zeners $\mathrm{DO7}^{\text {chase }}$	16136	c0.60
$\cup 57$	30	NPN trans 8C107/8 plastic	16137	-10.60
458	30	PNP trans 8C177/178 plastic	16138	- ¢0. 60
059	25	NPN TO39 2N697/2N171 \| silicon	16139	c0.60
U60	25	PNP 1059 2N2905 silicon	16140	¢0.60
$\cup 61$	30	NPN TO 18 2N706 silicon	16141	C0.60
U62	25	NPN BFY50/51	16142	80.60
U63	30	NPN plastic 2 N3906 silicon	16143	- 20.80
U64	30	PNP platic 2N3905 sillcun	16144	- $¢ 0.60$
US5	30	Germ. 0071 PNP	16145	¢0,60
U66	15	Plastic powar 2 N 3055 NPN	16146	¢1.20
U67	10	TO3 metal 2N3055 NPN	18147	C1. 20
468	20	Unifunction trans IIS43	15148	¢0.60
U69	10	$1 \mathrm{amp} \mathrm{SCA} \mathrm{TO39}$	16149	¢1.20
U70	8	3 amp SCR TO68 case	16150	¢1.20

COMPONENT PAKS

LINEAR PAKS

Manufacturer's 'Fall Outs" which include Functional and part-Functional Units. These are classed as "ou re ideal for tearning about ICs and specifications, bu U721 30 Assorted Lineat Types, 709 , 741 747. 748 10. 588 , Itc
ORDER NO 16227

UT6SD FM STEREO DECODEA
5 ICs 76110 equivalent to MC1310P-MA767. Deta supplied with pak.
OROER NO. 162
OROER NO. 16229
UTGA AUDIO POWER OUTPU
AMPLIFIERS
8 assorted types. SL403, 76013. 76003, eic. Oate
OROER No. 1622

74 SERIES PAKS

Manufacturer's 'Fall Outs' which include functional and pan!-Functional Units These are clessed as "out of spec" from the maker's very rigid specification: bul 74 G 100 Gates assofted $7400-01-04-10-50-60$ Otc. ORDEA No. 1822 74F-50 Flip-Flops assorted $7470-72$ §1.20 104-109. E1c.
ORDEA No. 16225
74 M 30 MSi. Assoned Troes. 7441 .47.90.154, ${ }^{\text {ELC ORDER NO }: 2626 \quad \text { C1.20 }}$

VEROBOARDS PAKS

VB1 Approx. 30 sq.in variuus sizes. All 0.1 in marix.
ORDER No 16199 ORDER NO 1619
ORDER No. 16200 various sizas 0.15 in matrix.

ELECTROLYTIC PAKS

A cunge of paks each containing 18 fitst quality, mixed
valua miniature electralyice.
ect values trom 047 uF to 10 uF
EC2 Values from 10 uF to 10014 F
ORDER No. 16202
EC3 Values from 100 It, in HOUF

METALFOIL CAPACITOR PAK

Mullutil C28 suring. Mixat values ranging from
$.01 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ complete with OROER No. 1 E204 © E1.20 eech

CARBON RESISTOR PAKS

These paks contaln a renge of Carban Resisiors
assarled into the following group A1 60 mixed IW 100820
OROER No. 16213
ROM
R2 GO muxhd in $1-8.2 \mathrm{k}$
OROER NG 16214
R3 60 mexed IW $10.82 k$
R3 60 mex i W 10.82k
ORDER No 16215
R4 60 ment IW 100820
R4 60 mixad IW 100820
ORDER NO $162: 6$
R5 40 mixed if $100-820$
ORDER No 16211
RG 40 misen $1 w 182 k$
ORDER No 16218
R7 40 mixed : 61082 k
R 40 mixed iW 1082 k
ORDER No 16219
R8 40 mixen f W 100.820k
CRDER NO 16220
P9 60 mixed IW W 1OM
ORDER No 16230
R10 40 mixed iW 1.10 M
R10. 40 mixed ; W 1.10M
ORDER No. 16231
WORLD SCOOP JUMBO SEMICONDUCTOR PAK

Transistors. Germ and Sillcon
ALL NEW AND CODED
Anviox 100 niecis ithering the ambleur famastic
harghin PAK ant an enormous saving
ORDER No 16222
f2. 28

Please word your orders exactly as printed, not forgetting to Include our part number. VAT
Add $12 \frac{1}{2} \%$ to prices marked* Add 8% to others excepting those markedt. These are zero rated POSTAGE
Postage and packing add 25 p unless otherwise shown. Add extra for airmall. Minimum order $£ 1$

Just a selection from our huge stocks! SEE OUR
CATALOGUE
126 pages packed with valuable information

ORDER NOW ONLY 50p plus 15p p\&p

DEPT. RC5 P.O., Box 6, Ware, Herts.
SHOP 18 BALDOCK STREET, WARE, HERTS

PLAIN-BACKED SELF-BINDERS

for your other magazines
(Maximum Format $11 \frac{1}{4}^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$)

The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

COLOURS: MAROON OR GREEN

(If choice not stated, colour available will be sent)

PRICE ㄷ. 50 P. \& P. 35 p

Available only from:-

SUPERSOUND 13 HI-FI MONO AMPLIFIER
superb sulid state audic
anpilifer nipliffer. Brand new components throughout. Silicon transistors
plus power out-put phus 2 power out-put
transistorsin push-puil. Full wave rectifieafion. Output approx whins. Frequency response 12 Hz . 30 KHz pre-amplifier stage with
separate Volume, Bass boost and Treble cut controls. Suitable for 8.15 obm speakers. Input
approx. 40 mV for full output. Supplied ready built and approx. Win
tented, with knobs, escutcheon papplied ready built and plugs. Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7:{ }^{\prime \prime}$ deep. plugs. Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ w
AC $200 / 250$ V. PRICE 18.00 . P. \& P. \&1.20.

HARVERSONIC MODEL P.A. TWO ZERO

ge advanced solid state general purpose mono
amplifier suitable for Public Address system, Disco, Guitar, Gram.. etc. Features 3 individually controlled inputs
 (each input has a separate 2 stage pre-amp). Ithout 1 ,
15 mv into 47 k . Input $2,15 \mathrm{mv}$ into 15 mv into 47 k . Input $2,15 \mathrm{mv}$ into 47 k . (suitable f f use with mic. or guitar etc.) Input 3200 mv into 1 meg. suitable for gram, tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, ac mains operation $200 / 240 \mathrm{v}$. Size approx. $12 \frac{1}{\prime \prime}^{\prime \prime}$ w. x $5^{\prime \prime}$ br $\times 7$ 7. d
Special introductory price $£ 28.00+\measuredangle 2.50$ carr \& pkg.
HARVERSONIC STEREO 44

stereo amplifer chasais, with an output of 3.4 watte perchan speakers. Us ing the latest ligh techno. lugy integrated cireuit amplifiers with built in short terin thermal overload protection. All componente including controle, 2 pin din speaker, fuse, tone control. volume rec./play socket are mounted on and in din tape
 brand new and tested, with \times max. depth, Supplied aluminlum 2 way escutcheon (to allow the ani anodised mounted horizontally or vertically) the amplifier to be 80 p . \& \mathcal{P}. Mains transformer with an output $£ 9 \cdot 00$ plus a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 1.50$ plus 40 p P. \& P if required. Full connection details -upplied,
BRAND NEW MULTI-RATIO MAINS TRANSFOR MERs. Giving 13 allernatives. Primary : 0-210-240v Secondary comblations $0-5$ - $10-15-20-2 j-30-35-40-60 \mathrm{v}$ balf ware at 12 mp . or $10-0-10,20-0-20,30-0-30 \mathrm{v}$. a 2 ampitull wave, Size 3 in . lon
deep. Price $\mathrm{i} 3.00 \mathrm{P} . \&$ P. $\& 1.20$.
MAINS TRANSFORMER. For power supplies Pri, $200 / 240$. Sec. $9-0-9$ at 500 mA . $£ 1.60$ Pri. 200/240v. Sec. 12-0-12 2 t 1 amp . 81.85 P. \& P. 65p. Pri. $2001240 \mathrm{~F} .8 \mathrm{sec} .10-0-10$ at 2 amp . $£ 2.50$ P. \& P. 90 p . Pri. $200 / 240 \mathrm{v}$. Sec. 23 v . at $1.5 \mathrm{amp}, 6 \mathrm{v}$ at $6 \mathrm{amu}, 8 \mathrm{~s}$, a
$50 \mathrm{~mA} \cdot £ 2.25+65 \mathrm{p}$. \& P.
ALL PURPOSE POWER SUPPLY UNIT 200/240v. input. Four switched fully amoothed D.C. outputs givin Fitted insulated 9 I and and 12v. at 1 amp on load. Fammer Anish outputterminale and pilotlampindicator Ready buith and metal case overall size $6^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} \times 2 ?^{\prime}$ Ready buift and

Price f6.75. P. \& P. 95 p
STEREO-DECODER SIZE $\mathbf{2}^{\prime \prime} \times \mathbf{3}^{\prime \prime}$
Ready built. Pre-aligned and tested earth 20.560 mV for 9.16 V neg. almost any FM VHF radio or tuner Stereo bescon light an be funer, required. Full details and inrequired. Full details and in:
structions (inclusipe of hints and tips)
supplifed 58.00 plus Stereo beacon light it required $40 p$

QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifier employing heavy ruty double wound mains transformer, ECC83. EL84. Complete with output transformer matehed for 3 ohm apeaker, Size 7 in wide $\times 3$ in deep $\times 6$ in high. Ready built and tested. PRICE s7.00, P : \& P. El. 25
ALSO AVAILABLE transformer and speaker. PRICE 88.00 . P. \& P outvut

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240才 Mains operated Solid State A/M F/M Stereo Tuner. Covering M.W. A.M. $540 \cdot 1605 \mathrm{KHZ}, \mathrm{VHF} / \mathrm{FM}$ 88-108 MHZ. Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Stereo Beacon Lamp Indcator. Built-in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage 600
na/v RMS into 20K. Simulated teak finish cabinet. inatch almost any amplifer. Size $8 t^{\prime \prime} w .4^{\prime \prime} \mathrm{h} \times 91^{\prime \prime}$ d.
 $\$ 1.50$ P. \& P.

SPECIAL OFFERS

Mullard LPl159 RF.IF Double Tuned Ainplifler Module for nominal 470 kHz . Size approx. $2 \mathrm{~S}^{3} \times 1 \mathrm{l}^{\prime \prime} \times{ }^{3}+$ earth. and connection details supplied. $22 \cdot 25+$ P. \& P. P. 20 p .

PRECISION MADE
Push Button Switch bank, \& Buttons giving 16 S/P C/O interlocked switclies plus 1 Cancel Button Plus $3 \mathrm{~d} / \mathrm{p}$ c/o lirome finished +witeh buttons 2 for $\kappa 1.80+20 \mathrm{p}, \mathrm{P}$ \& P

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now
with most attractive slatted front. Size $164^{\prime \prime}$ bigh \times $10 t^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep (approx.). Fitted with E.M.I Ceramic Magoet $13^{\prime \prime} \times 8^{\prime \prime}$ babs unit, H.F. tweete unit and crossover. AVAILABLE IN NOMINAL
4 ohm, 8 ohm or 16 ohm impedance (state which). $4 \mathrm{ohm}, 8$ obmi or 16 ohm impedan

OUR PRICE $£ 14.00$ sach. Carr. $£ 3$

Cábinet Available Separately $\mathbf{C 8 . 0 0} 0$ each. Carr. 82.00 Also available in 8 obms with EMI $13^{\prime \prime} \times 8^{\prime \prime}$ bass speaker with parasitic tweeter 612.50 each. Carr.
63.00

LOUDSPEAKER BARGAINS

in. 3 ohm $£ 2.00, P$ \& $P .35 \mathrm{p}$. $\mathrm{X} \times 4 \mathrm{in} .3 \mathrm{ohm} 52 \cdot 35, P$ \& P $48 \mathrm{p} .10 \times 6 \mathrm{in}$. \& or 15 obm 83.20 . P. \& P. 75 p $8 \times$ in. 3 ohm with high fux magnet $23 \cdot 00$, P. P. 60 p
Treeter. Approx. $3 \mathbb{N}^{*}$. Available 3 or 8 or 15 ohms Tweeter. Approx
$42.00+30 \mathrm{P} . \& \mathrm{P}$

2 PLASTIC CONE HF TWEETER
HIGH POWER HI-FI $\&$ ohm Done Tweeter. $1^{\prime \prime}$ vice oil. Nagnet size $3^{\prime \prime}$ dia. Sultable for use in up to 50

YYAIR \& REXINE SPEAKERS \& CABINET FABRICS
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS
app. 54 in. wide. Our priceC2.00 yd. Jength. P. $\$$ P. 50 p app. 54 in. Wide. Our price C2.00yd. Jeng
per yl. (min. 1 yd.). S.A.E. Ior samples.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE GLECTRO-DYNAMIC SPEAKER Size $110^{\circ "} \times 141^{\circ} \times 17^{\circ}$ deep. Weight $190 z$. Powe handing 20 W r.m.s. (40 W peak). Impedance 8 ohm only
Reaponse $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls etc. and used with or without bafte. Send SA, walls details. Only $£ 8.40$ each. P. \& P. 90 p for one, $\mathbf{\varepsilon} 1.10$ for two

Now also available $8^{*}-8$ ohm. 10 watter.m.e. 20 watt peak $40 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. Overall depth 1 . Ideal for $\mathrm{HI}-\mathrm{Fi}$ or for use in cars $\kappa 5.25+P$. \& P. (one 65p. two 75p).

SONOTONE 9TAHC COMPATIBLE STEREOCARTRIDGE
T/O strlus Diamond Stereo LP and Sapphire 78. ONLY $\& 2.50$ P. \& P. 20p. Also available fitted with twin Diamond T/O stvlus for Stereo LP. 63.00 P. \& P. 20p.

LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. £2.00 P. \& P. 20 p

LATEST T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on inono equipment. Only $£ 2.00$ P. \& P. 20 p

HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

A really first-clays Hi-Fi Stereo Amplifer Kit. Uses 14 transistors including Silicon Transistors in the Orat five stages on each channel resulting in even lower noise level with improved sensitivity. Integrated pre-amp with
Bass, Treble and two Volume Controls. Bass, Treble and two Volume Controls. Suitable for use With Ceramic or Crystal cartridges. Very simple to Output stage for any speakers fromin to 15 ohms included. Outputstage for anyspeakers from 8 to 10 ohms, Compact
design, all parts supplied including drilled metal worls design, all parts supplied including drilled metal work, component ldentlfcation clearly marked, simart brughed anodised aluminium: front panel with matching lsnobs, wire, solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specifications: Power output: 14 watts r.m.f. per channel into 5 olnns. Frequency response $\pm 3 \mathrm{~dB} 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 av into $1 \mathrm{M} \Omega$. Full power bandwidth: $\pm 3 \mathrm{~dB}$ $12-15, \sqrt{00} \mathrm{~Hz}$. Bass, boost approx. to $\pm 12 d \mathrm{~B}$. Treble cut approx. to $-16 d B$. Negative feedbacls 18 dB over main amp. Power requirements $35 v$. at 1.0 amp .
Fully detailed $?$ page construction manual and parts list free with kit or send 25p plus large S.A. E
AMPLIFIERKIT
Magnetic input components 33 pextra) P $13.50 \quad$ P. 80 p (Magnetic input components 33p extra) $\begin{array}{lllll}\text { POWER PACK KIT } & \ldots & \ldots & £ 5.50 & \text { P. \& P. } 95 p \\ \text { CABINET } & \ldots 5.50 & \text { P. \& P. } 95 p\end{array}$
Special offer only $\mathbf{2} 23.75$ if all 3 units ordered at one time plus $\mathbf{f 1 . 2 5}$ P. 8. P.

Full after sales service

3-VALVE AUDIO
AMPLIFIER HA34 MK II. Designed for Hi-Fi reproduction of records. A.C. Mains
operation. Ready built on operation. Ready built on
plated heavy gauge nietal chassis, size $7 \frac{1}{z}$ "W. \times 4"d. $^{\text {d }} \times$ 4 "h. Incorporates ECC83, CL84, EZ80 valves. Heavy
luty, double wound main ransformer and ontputtransormer matched for 3 ohm
sueaker. Separate volume controland now with improved ide range tone controls giving bass and treble lift and anel calive reeduack line. Ontput if watts. Front panel can be detached and leasis extended for remot ired and tested for only 850 . s a
HSL "FOUR" AMPLIFIER KIT. Similar in appearance advanced eircuitry. Complete set of parts, cte. c8.00 pranced efrcuitry. Cornplete set of parts, etc. c8.00
$10 / 14$ WATT HI-F AMPLIFIER KIT A stylishly inished
monaural amplifer with an output o 14 watts from EL84s in push-pull Super reproduction of both music and speech. with negll. gible hum. Separate
inputs for mike and gram . llow records gram . How records
and announcements
 to follow eacb other
Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83,
EFS6 and EZ80 rectifier. Simple instruction booklet 25p \times SAE (Free with parts). All parts sold separately.
ONLY C13.50. F. Fildu. Also ONLY 613.50 . P. Filt and tested 618.00 . 40 . Also avallable readiy

SPECIAL L\|NES OFFERED SUBJECT TO Limitell number of British Manufacturer's Surplus professional 100 watt RMS Slave amplifiers. Special features: 2 separate power modules, 1 for Bass response, and 1 formid. range/tweeter. stage LED display for
power o/p indication. A/c mains i / p suitchable for 110 power o/p indication. A/c mains i/p switchable for 110 AVAILABLE TO PERSONAL CALLERS ONLY-PLEASE PHONE TO CONFIRM AVAILABILITY

OUR PRICES INCLUDE VAT AT

Stirling Sound

MODULES DESIGNED AND MADE IN OUR OWN UK (Essex) FACTORY

Sold direct to you the customer at genuine money saving prices. All goods shown here guaranteed and sent post free in UK with V.A.T. included

Send now for your free catalogue - information sheets and build up a useful and informative catalogue
AMPLIFIERS 3 to 100 WATTS R.M.S.
Ready assembled on P.C.Bs.., rested and quaranteed. Easy to connect. With instructions. Output ratings $\pm 1 \mathrm{~dB}$.
SS. 103
I.C. amp. 3 watts R.M.S 4Ω. Input 100 mV .
£2.85
ss.103-3 Stereo verslon of above, ${ }_{5}^{21 . C . s}$ ع6.00
6 watts R.M.S. Into 3Ω using 13.5 V . Sensituvity $\overline{0.3 \% .3 \downarrow^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime} .}$ $0.3 \% .3 子^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$.
10 watts R.M.S. 10 watts R.M.S. Into 4
4
tivity
using
80
20 mV . THD $0.3 \% . \overline{3 t^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime} \text {. }}$
SS. 120

SS. 125

SS. 140

$0.3 \% .37^{\prime \prime} \times{ }^{\prime \prime} \times$.
20 watts R.M.S. Into
4Ω using 34 V . Sensl-
tivity 80 mV . THO
tivity $-3 \% 80.31^{\prime \prime} \times 2^{\prime \prime} \times 1$ THD
25 watts R.M.S. Into
8 \& using 50 V . S. Into
tivity - 140 mV . Dls
tortion - Less than
$0.05 \% \operatorname{Into} 8$ ת 5/N
better than 70d8 Ω 5/N
40 watts R.M.S. Into
4Ω using 45 V . Sensi
dvity - 300 mV . DIs
ortion ayplcally 0.1%
g" × 3土" $\times 1{ }^{\circ}$
tested and

£4.65
SS. 16084 watts R.M.S. Into
A n watts R.M.S. Into
4 n using 50 V . Sensi-
ivity - 350 mV . Dis-
ortion ivpicaliy 0.1\%
SS. $1100 \quad 100$ watts R.M.S. Into
π using $70 \mathrm{~V} / 2 \mathrm{~A}$. Input
sensitivity -- 500 mV .
Distortion at halt:
oower, typically 0.1%.
" $\times 31^{\prime \prime} \times 11^{\prime \prime}$ ",
Multi-finnad has sink for

THE CONTROL AND PRE-AMP MODULES

 UNIT ONEStereo pre-amp actlve tone consrol unlt 50 mV In for 200 mV out, 1016 V operation. Bass $\pm 15 \mathrm{~dB}$ at 30 Hz ; Treble $\pm 15 \mathrm{~dB}$ at 10 KHz ; Balance control: Volume control.
For caramic PU, FREE CONTROL PANEL FASCIA E9.00 UNIT TWO
SImilar to UNIT ONE bui for magnetic cartidge input. R.I.A.A, corrected. Sensitivity - 5 mV for 200 mV out (can be varledl. WITH FREE CONTROL PANEL
fASCIA.

C12.43 CONTROL PANEL FASCIA avallable
separately.
50 p separately

50p
SS. 100
Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on reble at $10 \overline{\mathrm{KHz}}$.

Stereo pre-amp sultable for ceramics, tape, adio, etc
£2.75

SS. 142
Stereo pre-amp for maq. pick-ups, R.I.A.A.
corrected

Wilmslow Audio

THE firm for speakers!
SEND $15 p$ FOR THE WORLDS BEST CATALOGUE OF SPEAKERS, DRIVE UNITS KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST

ATC • AUDAX • BAKER •BOWERS \& WILKINS •CASTLE •CELESTION • CHARTWELL COLES •DALESFORD DECCA •EMI •EAGLE •ELAC $\circ F A N E$. GAUS •GOODMANS •HELME •I.M.F. ISOPON •JR •JORDAN WATTS •KEF LEAK - LOWTHER •MCKENZIE ©MONITOR AUDIO •PEERLESS •RADFORD •RAM RICHARD ALLAN •SEAS •TANNOY VIDEOTONE •WHARFEDALE

WILMSLOW AUDIO oept rec

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1HF
Discount Hifi Etc. at 5 Swan Street and 10 Swan Street Tel: Wilmslow 29599 for Speakers Wilmslow 26213 for HIFi

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes. - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimaland binary number systems; conversion between number systems, representation of negative numbers, complementary systems; binary multiplication and division.
Book 2 OR and AND functions: logic gates. NOT, exlusive OR NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms: logic conventions Karnaugh mapping; three-state and wired iogic
Book 3 Half adders and tuli adders; subtractors; serial and paralle adders; processors and arithmetic logic units (ALUs); multiplication and division systems
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data: register systems; control unit; program ROM; address decoding, instruction sets: instruction decoding. control program structure
Book 6 Central processing unit (CPU); memory organisation character representation; program storage; address modes; input output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aplitude for logical thought it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics Everyone can learn from it - designer, executive. scientis! student, engineer

Contents include. Binary, octal and decimal number systems conversion between number systems: AND. OR. NOR and NAND gates and inverters; Boolean algebra and truith tables. De Morgans Laws, design of logic circuits using NOR gates: R-S and J-K fhip flops binary counters. shift registers and half adders

CAMBRIOGE LEARNING ENTERPRISES. UNIT 5, FREEPOST, RIVERMILL LOOGE. ST. IVES, HUNTINGDON. CAMBS. PE1 7 4BR. ENGLAND.

TELEPHONE: ST. IVES (0480). 67446
PROPRIETORS: OAYKIOGE LTD. REG. OFFICE: RIVERMILL LODGE. ST. NES
REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up thei number and dial it for you

These ccurses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you

The six volumes of Design of
Digital Systems cost only:
$+90 p$ post $\&$ packing by
And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions

THE ALGORITHiVI WRITER'S GUIDE explains how

 to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say extra.
GUARANTEE
 Giro Ac. No. 2789159
 If you are not enturely satisified your money will be refunded

Cambridge Learning Enterprises, Unit 5, Freepost.
Rivermill Lodge. St Ives. Huntingdon. Cambs, PE174BR England
Please send me the following books
sets Digital Computer Logic \& Electronics @ $\mathbf{E} 5.50$. p \& p included
sets Design of Digital Systems (ä) $£ 8.00$ p \& p included
Combined sets @ £12.00.p \& p included
The Algorithm Writer's guide @ E.3.40. p \& p included
Name
Address

I enclose a cher,ue/PO payable to Cambridge Learning Enterprises for t
Please charge my Access/Barclaycard Visa Eurocard Mastercharge. Interbank account number

Signature

deleted as appropriate
Telephone orders from credit card holders accepted on 0480 - 7446 (ansafone) Overseas customers should send a bank draft in sterting drawn on a London Bank

Rec 5

TRADE COMPONENTS

 JUST A FEW BARGAINS ARE LISTED - SEND STAMPED ADDRESSED ENVELOPE FOR A QUOTE ON OTHER REOUIREMENTS. PAY A VISIT. OVER 90\% OF STOCK BELOW QUANTITY WHOLESALE PRICE. ALL, PRICES INCLUDE THE ADDITIONAL DISCOUNT IN LIEU OF GUARANTEE. MINIMUM ORDER GOODS VALUE E1.00 BEFORE P/P 8 \&VAT.

Goods sent at customer's risk unless sufficient payment for registration (1 st ciass letter post) or compensation fee (parcel post) included.

VALVE BASE

Printed circuit B9A-B7G
Chassis B7-B7G
Shrouded chassis B7G-B8A B12A tube. Chassis B9A

Speakar $6^{\prime \prime} \times 4^{\prime \prime} 5$ ohm ideal for car radio $£ 1.00^{\circ}$
TAG STRIP -6 way $3 p \mid 5 \times 50 \mathrm{pF}$ or $2 \times 220 \mathrm{pF}$ 9 way $5 p$ Single $1 p$ trimmers

Car type panel lock and key 50p 18 volt 4 amp charger. bridge rectifier 79p GC10/4B £3.00 Aluminium Knobs for t" shaft. Approx $5_{8}^{\prime \prime} \times{ }^{\frac{7}{8}}{ }^{\prime \prime}$ with indicator Pack of 5 50p

BOXES - Grey polystyrene $61 \times 112 \times 31 \mathrm{~mm}$, top secured by 4 self tapping screws $32 \frac{1}{2} p$
Clear perspex sliding lid, $46 \times 39 \times 24 \mathrm{~mm} 10 \mathrm{p}$
ABS, ribbed inside 5 mm centres for P.C.B., brass corner inserts. screw down lid, $50 \times 100 \times 25 \mathrm{~mm}$ orange $48 \mathrm{p} ; 80 \times 150 \times 50 \mathrm{~mm}$ black 70p; $109 \times 185 \times 60 \mathrm{~mm}$ black $£ 1.10$
Used 999 ALARM UNIT. 12 volt includes loop cassette tape player, $2 \times$ d.p.t.d., 1×4 p.d.t. miniature relay. Reed relay, solenoid, 35 marked semiconductors, caps, resistors, pots, terminal strip etc.
£2.00 plus $£ 1.40$ p\&p

SWITCHES			
Pole	Way	Type	
1	2	Slide	12p*
6	2	Slide	20p ${ }^{\circ}$
2		Rotary Mains	$20 p^{\circ}$
2		or 1p 2W) Micro with rolier	20p
		Miniature Slide	16p ${ }^{\text {c }}$
1		Toggle	12po
S.P.S.T	am	o 240v. white rocker	

RESISTORS

 $\begin{array}{ccc}\frac{1}{8}-\frac{1}{4}-\frac{1}{2} \text { watt } & 1 p^{\prime \prime} \\ 1 \text { watt } & \ldots . . & 2 p^{\prime \prime}\end{array}$Up to 15 watt $2 p^{*}$ wound or 2% five times price.
Cinch 8 way std 0.15 pitch edge connector20p
Diode Equivalent Book 172 pages, AA111 to 2Y200, 1N34 to 1S3200, also outline and connection data £1.50 NO VAT

AUDIO LEADS

3 pin din to open end, $1 \frac{1}{2} y d$, twin screened $35 p^{\circ}$ 3 pole jack both ends 4 ft
3 pole jack plug to tag ends, 4 ft 80p

COMPUTER \& AUDIO BOARDS/ASSEMBLIES VARYING CUNTENTS INCLUDE ZENER, GOLD BOND. SILICON, GERMANIUM, LOW AND HIGH POWER TRANSISTORS AND DIODES, HI STAB RESISTORS, CAPACITORS, ELECTROLYTICS, TRIMPOTS, POT CORES, CHOKES ETC.

31 b for $\mathbf{8 5 p}+\mathbb{£ 1 . 0 0}$ post and packing 7 lb for $\mathbf{£ 1 . 9 6}+\mathbf{£ 1 . 4 0}$ post and packing
1 k horizontal preset
3. Tape Spools 3p with knob 10 for 30p* Terry Clips 4p 12 Volt Solenoid 30p

TV KNOB

Dark grey plastic for recessed shaft (quarter inch) with free shaft extension $5 p^{*}$ ENM Lid. cased 7 -digit counter $2 \frac{1}{4} \times 1 \frac{3}{4} \times 1 \frac{1}{4}$ " approx. 12 V d.c. $(48$ a.c.) or mains 75 p 0.9 ZM1162A INDICATOR TUBE
0.9 Inline End View. Rectangular Envelope 170 V 2.5M/A

GRUNDIG REGULATED TAPE MOTOR
6 V nominal approx. $3 \times 1 \frac{1^{\prime}}{}{ }^{\prime \prime}$. Incl. shock absorbing carrier

70p
3.5 mm metal stereo plug $20 \mathrm{p}^{\circ}$

HERMISTORS
and V.D.R's
CZ1/2/6/11/14. E23
E29904P230, ITT116-121-40, K813. KR22. KT150, VA1005/6/8/ 1010/1033/4/7/8/9/1040 1053/5/1066/7/1074/6/7) 1082/6/109 1/6/7/8/1 100/ fawn/grese

RELAYS	
	3000 type.
OHM coil. 4 pole c/o 80	
12v d.p.c.o. heaw duty octal 80p	
700 ohm 11-31 volt miniature sealed d.p.c.o.80p	
185 ohm 6/12V miniature sealed, 4 p.c.o.......£1. 20	

Miniature 0 to 5 mA d.c. mater approx. "i" diameter
RS Yellow Wander Plug Box of 12
18 SWG multicore solder
RS 20 way miniature ribbon cable. 25 metre rol (normal trade £19.60)

JAP 4 gang min. sealed tuning condensers 30p*
ELECTROLYTICS * Many others in stock Up to 10 V 25 V 50 V 75 V 100 V 250 V 350 V 500 V MFD

10	$4 p$	$5 p$	$6 p$	$8 p$	$10 p$	$12 p$	$16 p$	$20 p$
25	$4 p$	$5 p$	$6 p$	$8 p$	$10 p$	$15 p$	$18 p$	$20 p$
50	$4 p$	$5 p$	$6 p$	$9 p$	$13 p$	$18 p$	$25 p$	-
100	$5 p$	$6 p$	$10 p$	$12 p$	$19 p$	$20 p$	-	$\overline{0}$
250	$9 p$	$10 p$	$11 p$	$17 p$	$28 p$	-	$85 p$	$£ 1$
500	$10 p$	$11 p$	$17 p$	$24 p$	$45 p$	-	-	
1000	$13 p$	$22 p$	$40 p$	$75 p$	-	$£ 1.50$	-	-
2000	$23 p$	$37 p$	$45 p$	-	-	(allare	-	-

Tubuiar untulum 20 p each. $16-32 / 275 \mathrm{~V}, 100-150 \mathrm{~V}$, $100-100 / 275 \mathrm{~V} 30 \mathrm{p}^{\circ} 50-50 / 385 \mathrm{~V}, 12,000 / 12 \mathrm{~V}$, $32-32-50 / 300 \mathrm{~V}$. $20-20-20 / 350 \mathrm{~V}$ 60p. 700 mfd/200V £1.00: 100-100-100-150$150 / 320 \mathrm{~V}$
£2.00
RS 100-0-100 micro amp null indicato
Approx. $2^{\prime \prime} \times \frac{3^{\prime \prime}}{8^{\prime \prime}} \times \frac{3}{4}$
£1.50
INDICATORS
Bulgin D676 red, takes M.E.S. bulb 12 volt, or Mains neon, red pushfit _........... 18p R.S. Scale Pririt, pressure transfer sheet 10 p

CAPACITOR GUIDE - maximum 500V
Up to .01 ceramic $3 p^{*}$. Up to .01 poly $4 p^{*}$. .013 up to .1 poly etc. 5 p*. 12 up to .68 poly etc. $6 p^{*}$. Silver mica up to 360 pF 8 p , then to $2,200 \mathrm{pF} 11 \mathrm{p}$, then to .01 mfd 18 p .
10p.1/750. 12p. .01/1000, 8/20. .1/900 $.22 / 900,4 / 16.25 / 250 \mathrm{AC}(600 \mathrm{vDC}) 40 \mathrm{p}$. 5/150, 10/150, 40/150.
Many others and high voltage in stock.

FORDYCE DELAY UNIT

240 volt A.C./D.C. Will hold relay. etc., for approx 15 secs after power off. Ideal for alarm circuits etc.

CONNECTOR STRIP

Belling Lee L1469, 4 way polythene. 6p each	$1 \frac{1}{2}$ glass fuses $250 \mathrm{~m} / \mathrm{a}$ or 3 amp (box of 12$)^{12 \mathrm{p}}$

8 ulgm .5 mm Jack plug and switched socket (pair) 30 p
Reed Switch 28 mm . body length $9 p$

Aluminium circuit tape, $\frac{1}{\prime \prime} \times 36$ yards-self adhesive. For window alarms, circuits, etc. 75p

TVV MAINS DROPPERS

5 assorted multiple units for 50p*
100pF air-spaced tuning capacitor............. $£ 1.00$
$5 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{33^{\prime \prime}}{}$ Speaker, ex-equipment 3 ohm 300°
2 Amp Suppression Choke
8p
$3 \times 2 \frac{1}{2} \times \frac{1}{18}$ " PAXOLINE
5 for 20p
10 for 10p
4
PCV or metal clip on MES bulb Holder 5 for 20p
Valve retainer clip, adjustable
5 for 10p

OUTPUT TRANSFORMERS*

Sub-miniature Transistor Type
$25 p$
Valve type

POT CORES with adjuster

LA2508-519
30p pair

STYLII 20p

ER5S $8 / 5 \mathrm{MX} / \mathrm{HC} 2 / E R 2$. Compact $\times 2 / \mathrm{X} / \mathrm{C} / \mathrm{SX}$. Garrard GCM 21 T/22T/GKM 24 T/GKS25/GP59. E.S.R C1/SX1M/ST3/CS80/TC8/OP and T, and many other sapphire types. Send sample required with payment and s.a.e. if in doubt.
RS neg. volt regulator T03, 306-099 lequiv. MPC900) 10A, 100 watt $4-30$ volt. Adjustable short circuit protection. Normally $£ 12.50$. $£ 6.00$

SEMICONDUCTORS Full spec. by Mullard etc. Many others in stock

BFX12/29/30
BFX84/88/89
BFY52
BFY
BR
BR 101
BRY39/56
BSV64
BSV79/80 F
BSV79/80 FETS BSV8 1 Mosfet
BSX20/21
BSY40
BSY BSY40 BSY95A
BU204+ Mount Kit
8.5 BU208
CV70

ASY63)

GET111
ON222
ON222
TIP30/30
TIS88A F.E.T. $\mu A 7805$
$\pi 1486$
'2Tx300/34
2N393 (MA393r
2N456A
2N706A
2 N 929
2 N 987
2N1484
2N1507/2219
2N2401
2N2412

	$\begin{array}{ll} \text { 2N2483 } & \text { 23p } \\ \text { 2N2904/5/6/7/7A } & \text { 15p } \end{array}$
20p	2N3053 14p
17p	2N3055 R.C.A. 50p
13p	2N3704 8p*
50p	2N3133 20p
$30 p$	2N3553 50p
26p	2 N 4037 34p
30p	2N5484 FET 34p
80p $90 p$	2SA141/2/360 31p
14p	2SB135/6/457 20p
14p	40250 12N3054) 30p
$12 p$	NEW B.V.A. VALVES
E2	E891 34p
I2.	ECL80 50p*
5p	PCC84 $40 p^{\circ}$
40p	6SN7/6K7 70p
20p	6AT6 70p.
45p.	EZ81 40p ${ }^{\circ}$
23p	TRANSFORMER Ferromag C core. Screen-95-105-115-125-200-220-240v
£1.60	
81	
7p	input ourput $1 / \mathrm{V}$ \#A x
30p	$2+24-0-24 v 1.04 A+20 v$ 1 mA . These current ratings
50 pij	
$15 p$ $14 p$	can be safely exceeded by $50 \%, £ 3.50+£ 1.00 \mathrm{psp}$.
40p	WOODS 240 V A.C.
E1	
15p	Approx. 2,500 r.p.m. continuous rated 5 ln FAN (ex-computer)
$30 p$	
70p	
	£3.60 plus E 1 p ¢p

OTHER DIODES

GARRARD
GCS23T Crystal Stereo
Cartridge
Mono (Stereo compatible). Ceramic or crystal $75 p^{\circ}$

1N4005/6
 HY103 SR100

SR400
REC53A
LT102
RECTIFIERS
BY×22-200
BYX $38-300$ R
BYX $38-600$ BYX38-900
BYX38-1200
BYX49-600
BYX49-900
BYX49-1200
BY $X 48-300 R$
BYX48-600 BYX 48 -900 BYX48-1200F BYX72-150R
BYX72-300R BYX72-500R BYX42-300 BYX42-900
BYX42.1200

OPTO ELECTRONIĊS	
Diodes TIL209 Red 12p	Photo transistor BPX29 P6p
BPX40 50p	OCP71 45p
BPX42 80p	BIG L.E.D. 0.2"
$\begin{aligned} & \text { BPY10 80p } \\ & \text { (VOLTIAC) } \end{aligned}$	2v $50 \mathrm{~m} / \mathrm{A}$ max.
BPY68)	RED 14p
BPY69 80p	Wire end neons
BPY77)	$7 p$
PHOTO SILICON CONTROLLED SWITCH BPX66 PNPN 10 amo $£ 1.00$	

		TIL209
6/800	5p	BPX40
1250	5p	BPX42
1,500	1818p	BPY10
100	7 p	(VOL
400	8 p	BPY68
1,250	14p	BPY69
30	10p	BPY77
300	20p	
300	40p	PHO
600	45p	SWIT

\qquad
mp Volt

BYX42-1200
BYX46-300R BYX46-400R -

- Avalanche tvoe

Amp	Volt	TRIACS	
6	800	Plastic RCA	£1:20
25	900	BTX94.900	$£ 4.00$
25	1200	BTX94.1200	$\mathbf{£ 6 . 0 0}$

RS 2 mm Terininals
Bliue \&n Black

Chrome Car Radio facia .. 15 p

 Ru| Philips Iron Thermostat |
| :--- |
| MoMurdo PP1088 way edge plug $10 p$ |
| Multicore Solder $\frac{1}{2} \mathrm{~kg} \cdot 16$ or 18 or 20 | s.w.g.

$$
\bar{A}
$$

A
 AS2

 BC186 $\begin{array}{ll}\text { BCY30-34 } \\ \text { BCY70/1/2 } & 80\end{array}$ BYi26/7 4p HG1005 10p HG5009HG5079
M3
OAO 1
OA47
OA200
OC23
$\begin{array}{ll}0 C 23 & 20 p \\ 0 C 200-5 & 20 p\end{array}$
d, or
New unmarked
ample lead ox
ACY $17-20 \quad 8 \mathrm{p}$

Relay Socket miniature 2 PCO $15 p$
28 pin d.i.l. socket low profile $33 p$
$\frac{28 \text { pin dii.. sockel }}{\text { TIE CLIPS }}$
Nylon self locking, $3 \frac{1}{2}$
39A valve can
0-30, or 0-15, black pvc. 360°
dial, silver digits, self adhesive.
$4 \frac{1}{2}$ dia.
Mullard Semiconductor, Valve \&
Component Data Book 1976-8

MINIATURE EDGE METERS

 $100 \mu \mathrm{~A}$ f.s.d., scaled 0.5 . 12 V . Illuminated. blue perspex front, $35 \mathrm{~mm} \times 14 \mathrm{~mm} £ 3.00$$200 \mu \mathrm{~A}$ level meter, clear front. $10 \times$ 18 mm

TIC44	24p	6800 mfd. 10v 5
2G240	£1	$32+32 \mathrm{mfd} .275 \mathrm{v}$

2 G 302	5 p	
2 G 401	5 p	$16+32 \mathrm{mfd} .350 \mathrm{v}$

$\begin{array}{lr}2 G 401 & 5 p \\ 2 N 711 & 25 p\end{array}$
2N2926
$\begin{array}{ll}2 N 598 / 9 & 6 \mathbf{p} \\ 2 N 1091 & 8 p\end{array}$
$\begin{array}{ll}2 N+302 & 8 p \\ 2 N 1907 & E 1\end{array}$
Germ. diode 1 p
2N3055
Motorola 30p
GET 120 (AC 128
$\begin{array}{ll}\text { in 1. sa heat } \\ \text { sink } & 15 p\end{array}$
$8+8 \mathrm{mfd} .350 \mathrm{v} 5$ for 40 p .
1 mfd non-polar
350 v 10 for 30 p
$\begin{array}{lr}25000 \mathrm{mfd} & 25 \mathrm{v} \mathrm{20p} \\ 12000 \mathrm{mfd} & 12 \mathrm{v} \mathrm{12p}\end{array}$ $\begin{array}{lll}\text { G.E.C. } & 5 \% \\ \text { capacitors } & .013 & \begin{aligned} & \text { Hi-stab } \\ & 056 .\end{aligned}{ }^{2} .\end{array}$ 061 . 066 . 069.075 . 08
$\begin{array}{lr}\text { Philips Head } & 10 \text { for } 20 p \\ \text { Cleaner Tape } & 25 p\end{array}$

BC548B	500 for $£ 25^{\circ}$
BC556	500 for $£ 25^{\circ}$
BCY71	500 for $£ 40$

TBA920 10 for $£ 10.00^{\circ}$ Vero card handle 10 for 50 p $62 \Omega \frac{1}{2} W$ Resistor
c5 ${ }^{\circ}$ for $2,000 \mathrm{p} / \mathrm{p} £ 1.00$ BF181) 10 for $£ 1.00$

$\begin{aligned} & \text { SPECIAL OFFERS } \\ & 2500 \mathrm{mfd} .40 \mathrm{v} 30 \mathrm{p}^{\circ} \\ & .1 \mathrm{mfd} .350 / 500 \mathrm{v} \text { for } 15 \mathrm{p}^{*} \end{aligned}$

INTEGRATED CIRCUITS

INTEGRATED CIRCUITS	
TBA920	C2.50*
TAA 700	C2.00

TAA 700 TBABOO

141 d.i.l. op amp uA 702 Op Amp
723 17231709
SN76013N
SN76228N SN76131N SN74017N
TAD 100 AMRF TAD 100 AMRF
CA3001 R.F. Amp CA3001 R.F. Amp
CA3132
CD4013 CMOS $\begin{array}{ll}\text { CD4013 CMOS } & 360^{\circ}\end{array}$ CD4069
TAA300
1 wI Amp
E1.00 TAA550 Y or G TAA 263 Amp
7402/4/10/20/30
$7402 / 4 / 102$
7414
$7438 / 74 / 86$
7438/74/86 7414
LM300. 2-20V reg 690
 74154 ZN414 Radio Chip E 1.20 RIgid HANDLES
with secret fiting screws हैp
Belling Lee white plastic
Belling Lee white plastic.
surface coax outlet box 20 p

Miniature Axial Lead Ferrite
Choke formers 5 for 10 p
RS 10 Turn

$\begin{array}{ll}\text { Geared Knob 8-1 ratio, } \\ \text { 17." }_{\text {H. }} \text { diam., black } & 70 \mathrm{p}\end{array}$
KLIPPON 25A 440
TERMINAL BLOCKS
professional leat spring clamp, twin with clip-over Strip of cover $440 \mathrm{AP} 40 \mathrm{~V} \quad 12 \mathrm{p}$

SEMICONDUCTORS. ALL FULL SPEC. BC212, BC182, BC237, BCY71 BF197. BC159, all 8p each. RCA 2015, TO3 POWER TRANSISTORS ISIM $2 N 30551.35$ p. MRD3051 PHOTO TRANSISTORS 35 p. FET's SIMILAR TO 2N3819 17p. MOSFET SIMILAR 40673 35p. 3N140 MOSFETS 50p. M203 DUAL MATCHED PAIR MOSFETS, SINGLE GATE PER FET 40p. SL301 DUAL MATCHED PAIR SIL NPN TRANSISTORS Ft 300MHz. 30p. INTEL C 11031024 BIT MOS RAMS 95p, BB 113 TRIPLE VARICAP DIODE 35p. MC1310 STEREO DECODER IC £1.20. TBA B00 IC's 90p. CD 4051 IC's 50p. 741 B PIN IC's 23 p DIODES; IN4002 4p. IN4005 7p. RED LED's $0.2^{\prime \prime}$ or $0.125^{\prime \prime} 12 \mathrm{p}$. NIXIES ITT 5870 ST 85p. GN9A 65 p . MAN3A $3 / \mathrm{mm} 7 \mathrm{SEC}$. DISPPLAYS 50 p .
MICROPHONES: GRUNDIG ELECTRET MICROPHONE INSERTS WITH FET PREAMP £1.50. CRYSTAL MIXE INSERTS 37 mm 45 p. ELECTRET CONDENSER MIXES. IK IMP. WITH STANDARD JACK PLUG £285. EM506 CONDENSER MIKES. UNI DIRECTIONAL. FET AMP DUAL IMPEDANCE 5OK/GOD OHMS ON/OFF SWITCH $30-18 \mathrm{KHz}$ f1100 EM 104 MIN TIE CLP CONDENSER MIKES, OMNI. 1 K IMP, USES DEAF AID BATTERY (SUPPLIED) $£ 4.95$.

MORSE KEYS: PLASTIC TYPE 95p. ALL METAL HI-SPEED TYPE $£ 2.25$
HEADPHONES: 8 OHM STEREO PHONES PADDED EARPIECES AND HEADBAND, CURLY CORD, $30-18 \mathrm{KHz}$ ONLY $£ 3.00$

SWR/POWER METER TYPE SWR50 SWR 1:3-1:1, POWER $0-1 \mathrm{Kw}$. 3.5 TO 150 MHz .52 OHMS IMPED. $£ 12.75$. SWR AND F.S. METER $3-150 \mathrm{MHz} .50$ OHMS IMPED. $£ 9.50$. FX2000 CRYSTAL MARKER GENERATOR 100 KHz (LESS XTAL) $£ 7.90$.

SOLDER SUCKERS: PLUNGER TYPE. REPLACEABLE NOZZLE, EYE PROTECTION SHIELD. HIGH SUCTION $£ 4.95$.

CRYSTALS. 300 KHz 40 p .4 .43 MHz CTV XTAL 45 p .
EDGE CONNECTORS: 0.1 MATRIX 64 WAY 65p. 34 WAY 40p. $0.2^{\prime \prime} 18$-WAY $15 p$

RELAYS: MIN SEALED TYPE 4 POLE CHANGEOVER 36 OHM (IWITH BASE 45 p. 700 OHM 55p. MIN SEALED 240 V AC 2 POLE C/O RELAYS 40 p .4 POLE REED RELAYS, 12 volts 20p

MOTORS: $1-5$ TO 6 v DC MODEL MOTORS 20p. 12v DC 5 POLE 35p. SUB MIN. 'BIG INCH' $115 v$ AC 3RPM MOTORS 30 p .

BOXES: BLACK ABS PLASTIC PROJECT BOXES. BRASS INSERTS AND LID 75 $\times 56 \times 35 \mathrm{~mm} 44 \mathrm{p} .95 \times 71 \times 36 \mathrm{~mm} 52 \mathrm{p} .115 \times 95 \times 36 \mathrm{~mm} 60 \mathrm{p}$.

TRANSFORMERS: $6-0-6 \mathrm{v} 100 \mathrm{~mA}, 9-0-975 \mathrm{~mA}, 12-0-12 \mathrm{v} 52 \mathrm{~mA}$ ALL 75 p each. $12-0-12 \mathrm{v} 100 \mathrm{~mA} 95 \mathrm{p} .12$ vo!t 500 mA 95 p . $1: 1$ TRIACXENON PUISE TRANSFORMERS 30 p .6 MH 3 amp CHOKES 30p.

BUZZERS: GPO TYPE 6-12 volts 30p. 12 volt LARGE PLASTIC DOMED BUZZERS (50mm) LOUD NOTE 50p. MIN. SOLID STATE BUZZERS, 6-9-12 OR 24 volt. ALL 15 mA 75 p each
U.H.F. TUNERS: PUSH BUTTON T.V TYPE (NOT VARICAP) NEW AND BOXED £2.50.

TAPE HEADS: STEREO CASSETTE £3.00. MN1330 DUAL IMPED R/P HALF TRACK HEADS 50p. SRP90 $\frac{1}{6}$ TRACK R/P HEADS £1.95. STANDARD 8 TRACK STEREO £1.75. TD 10 DUAL HEAD ASSEMBLIES 2 HEADS. BOTH $\frac{1}{9}$ TRACK R/P WITH BUILT-IN ERASE, MOUNTED ON 2 HEADS. BOT
BRACKET $£ 1.20$

SPECIAL OFFER: ZN414 RADIU CHIPS 75p. LM380 80p.
METERS: 200 MICRO AMP MIN. LEVEL METERS 75p. GRUNDIG IMA BATT LEVEL METERS $40 \times 40 \mathrm{~mm} £ 1.10$. STEREO TUNING METERS 100 MICROAMP PER MOVEMENT $£ 2.75$.

30 TURN DIAL MECHANISMS WITH LOCKING ARM, ALUMINIUM DIAL SCALED 0-100. WINDOW SCALED $0-30,32 \mathrm{~mm}$ DIAMETER, $\frac{1}{6}$. SPINDLE NEW £1.75.

TRANSDUCERS: ULTRASONIC MADE BY MURATA. 40 KHz £2.95 PAIR (15 mm DIAM)

SWITCHES: MIN TOGGLE SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$, DPDT $8 \times 7 \times 7 \mathrm{~mm} 50 \mathrm{p}$. DPDT CENTRE OFF $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. MIN. PUSH TO MAKE OR PUSH TO BREAK $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$ EACH TYPE, 10 amp ROCKER SWITCHES SPST 12 n SLIDER SWITCHES: DPDT MIN. 12p. DPDT C/OFF 20p. 4 P2W 20p. MICRO SWITCHES: STANDARD SIZE ROLLER ACTION 15 p . MIN. $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. SWITCHES: STANDARD SIZE ROLLER ACTION $15 p$. MIN. $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$.
PLESSEY WINKLER SWITCHES, 1 POLE 30 WAY 2 BANK ADJUSTABLE STOP PLES

DALO 33Pc Etch resist PENS...70p
AMPHENOL CONNECTORS
PL259 plugs. 45p SO239 sockets...40p Reducers. 12p
GLASS REED SWITCHES
28 m m normally open . 50 p for 10
MULTIMETERS
LT101, 1000 ohms per volt
0-10-50-250-1000VDC
0-1, 0-100MA DC CURRENT. 0-3K, 0-150K RESISTANCE $£ 5.00$
Y206, 20,000 ohms per volt
0-10-50-250-1000VAC. 0-5-25-125-250-500-1000VDC O-0.05. -5-2500MA DC CURRENT. 0-3K, 300K, 3MEG RESISTANCE £9.95
ETP SOLDERING GUNS, $240 \mathrm{VAC}, 100$ watts, instant heat $£ 3.45$
40 watt 24CVAC Pencil tip SOLDERING IRONS, lightweight
l2VDC 15 watt PORTABLE SOLDERING IRON-£1.60
SPECIAL OFFER:
$7^{\prime \prime} \times 4^{\prime \prime} 15 / 20$ Ohm SPEAKERS, new . 75p eecin
INTERCOMS
2 station model, 60 cable... $£ 4.50$
3 station modet . £6.25
POWER SUPPLIES
HC244R: fully stabilised. 240 VAC input, 3-6-7.5-9 volts switched output at $400 \mathrm{~m} / \mathrm{a}$. on/off switch and polarity reversing switch ... $£ 4.75$ Cassette Power Supply, plugs into 13 amp socket. 6-7.5-9VDC outputs at DC Car Adaptor. 12VDC input, 6 VDC output, fully regulated, 1 amp max... $£ 1, .90$ MOTORS
Smail synchronous 240 VAC Motors, with gearbox. $1 / 5$ th RPM or $1 / 24$ th RPM...70p each. 15 RPM . $£ 1.20$

WATCHMAKER SCREWDRIVER SETS
5 all-metal drivers in plastic wallet. . $£ 1.00$
Small side cutter, insulated handles.. $£ 1.35$
Small snub-nosed pliers, insulated handles... $£ 1.35$

PRECISION CAPACITOR

O.Imfd $63 \mathrm{~V} 1 \%$ polycarbonate...25p $3.3 \mathrm{mfd} 1 \% 160 \mathrm{VDC}$. poly $\ldots 20 \mathrm{p}$
ROSS SIREN ALARMS, operate on 6VDC . 85p
200PF twin gang solid dialectric VARIABLE CONDENSERS, $\frac{1}{4}$ " spindle . 35p
10MFD G00VDC BLOCK PAPER CAPS, new. 65p EARPIECES, 80 hm with 2.5 or 3.5 mm piug... 14p. Crystal 3.5 mm plug. . 32 p Russian type. 3 mm plug ..25p

MICRO SWITCHES
Standard size, SPCO roller operated .. 15p
Heavy duty. 15 amps. button operated,
SPCO. $65 \times 15 \times 15 \mathrm{~mm} 25 \mathrm{p}$
JUMPER TEST LEAD SETS
10 teads with insulated croc clips each end, different colours... BOp
AUDIO LEADS
2 Phono plugs to open end. 2 mtrs, twin screened. . 20 p
Phono plug to 2 croc clips, 2 mtrs single screened 25 p
STEREO HEADPHONE LEAD
Black, curly. 10° approx with stereo jack plug. 50 p
741 S (wide bandwidth) 8 -pin DIL... 35p
TIL305 ALPHA NUMERICAL DISPLAYS full spec with data sheet. $£ 2.50$

TAPE HEAD DEMAGNETISERS, 240 VAC with on/off switch ... $£ 2.00$ TELEPHONE PICK UP COIL, suction type with lead and 3.5 mm plug . 50 p
SQUARE PANEL METER, 100 microamp FSD, 90 degree right angled movement. 4" square (depth 2"). arbitrary marked scale... 22

MODEL MAKERS GEAR SETS
1 pinion. 5 nylon gears, 2 racks, shafting and model motor...£1.75 PIEZO CRYSTAL GAS IGNITERS...£2.25 AMPLIFIERS
OTL410 10 watt module into 8 Ohms mono. 28VDC max...€4.65 555 S stereo amplifier module. 3 watts output into 8 Ohms, $12 \mathrm{VDC} \ldots 5.35$
I.C. EXTRACTOR TOOLS...32p

HOME RADIO (Compononts) LTD. Dept. RC, 234-240 Ľondon Road, Mitchan, CR4 3HD. Phono: 01-648 8422

Electronics for nuts...

We take you step by step through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.
(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

Hectronics for hams.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS \qquad

REGENERATIVE

The regenerative v.h.f. receiver is assembled in a readymade case, with a consequent easing of constructional difficulties

This simple receiver uses three transistors (including one f.e.t.) and provides full coverage of the normal 88 to 108 MHz f.m. broadcast band The set is completely self-contained as it incorporates a 9 volt battery supply and a telescopic aerial. The output is intended to feed a crystal earphone, but in practice it seems to work into any normal type of headphones perfectly satisfactorily.

The circuit is rather unusual in that it uses a regenerative detector which demodulates the received f.m. signal using slope detection. While it is possible to resolve quite weak stations with this receiver, it is only really intended for use in areas where f.m. reception is reasonably good. Adjustment of the set is then not too critical, and a high signal-to-noise ratio with good volume should be obtained. With weak stations it is rather difficult to get optimum results and what are normally only slight hand-capacitance effects become considerably more apparent.

The output quality of the set is very acceptable. and is better than that which is normally produced by a simple a.m. receiver, or by more complicated ones for that matter. This is due to the relatively wide bandwidth which can be used at v.h.f., and which enables a good treble response to be obtained. Also, except under exceptional conditions. reception will be of a fairly local nature and so interference from foreign stations is virtually nonexistent. On the deficit side, it is obviously impossible to receive foreign stations on a receiver such as this.

CIRCUIT DETAILS

Fig. 1 shows the complete circuit diagram of the receiver. The aerial is coupled to the detector stage by C 1 , this capacitor being needed to reduce the loading effect of the aerial on the detector. Without this low value series capacitance the detector would be so heavily damped that it would be prevented from functioning at all.

TR1 is in the detector stage and is connected in the common gate Colpitts oscillator mode, with feedback being provided by C12. The operating frequency of the circuit is determined by the tuned circuit given by L1, C11 and VC1. The last component is the tuning capacitor of the receiver. L2 is an r.f. choke which ensures that there is a fairly high impedance at v.h.f. in the source circuit, whilst maintaining a low impedance at audio frequencies. R 1 is the source bias resistor as well as the source load, and C 4 bypasses this at v.h.f. The audio output is developed across R1. C2 and C3 are decoupling capacitors.

Although, as was just stated, the detector transistor is connected in the Colpitts oscillator mode. the circuit is adjusted in practice such that there is just not quite enough feedback to cause oscillation. This is normal practice with a regenerative a.m. detector, and the feedback level causes the circuit to offer maximum gain and selectivity. In consequence the tuning response curve of the receiver features a sharp peak with steeply falling skirts on either side. When a frequency modulated signal is

V.H.F. RECEIVER

Employing slope detection, this 3 -transistor f.m. radio requires no alignment.

applied to one of these tuning response skirts the result is a detected signal whose amplitide varies with the frequency modulation. The closer the detector is brought to the oscillation point the greater is the detected a.f. output for a given frequency modulated signal. Since the background noise level does not vary greatly with different levels of regeneration, there is an increase also in signal-to-noise ratio. The linearity of the detector is found, in addition, to be at its best when it is ad-
justed just below the threshold of oscillation.
VR1 provides the regeneration control by varying the supply voltage applied to the drain of TR1. and hence the gain offered by this transistor. It can therefore be adjusted to a point where the gain of TR1 is just insufficient to cause oscillation. This is a more convenient method of regeneration control than would be given by varying the value of the feedback capacitor, C12, and the control is in practice smooth and relatively easy to set up.

Fig. 1. The circuit of the regenerative v.h.f. receiver. The use of slope detection makes this a very simple receiver which requires no alignment

COMPONENTS

Resistors
(All fixed values $\frac{1}{4}$ watt 10%)
R1 $1 \mathrm{k} \Omega$
R2 $1.8 \mathrm{M} \Omega$
R3 $5.6 \mathrm{k} \Omega$
R4 $1 \mathrm{k} \Omega$
R5 1.2M Ω
R6 4.7 k 几
VR1 $5 \mathrm{k} \Omega$ potentiometer, log, with switch S1

Capacitors
C1 3.9 pF ceramic
C2 $10 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C3 $0.022 \mu \mathrm{~F}$ disc ceramic
$\mathrm{C} 40.01 \mu \mathrm{~F}$ disc ceramic
C5 $0.22 \mu \mathrm{~F}$ type C280 (Mullard)
C6 330pF ceramic plate
C7 $0.22 \mu \mathrm{~F}$ type C280 (Mullard)
C8 270 pF ceramic plate
C9 $0.047 \mu \mathrm{~F}$ disc ceramic
$\mathrm{C} 10100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C11 6.8 pF polystyrene or silvered mica
C12 6.8 pF ceramic
VC1 25pF variable, type C804 (Jackson)

Inductors

L1, L2 see text
Semiconductors
TR1 BF244B
TR2 BC109C
TR3 BCY71

Switch

S1 s.p.s.t., part of VR1

Socket

SK1 3.5 mm . jack socket
Miscellaneous
Verobox type 65-2520J
Telescopic aerial (see text)
2 control knobs
Plain perforated s.r.b.p. board, 0.1 in . matrix
Iron dust core, $17 \times 8 \mathrm{~mm}$. (see text)
Enammelled copper wire, 0.9 mm . dia. (20 s.w.g.)

9 volt battery type PP3 (Ever Ready)
Battery connector
Wire, solder, etc.

A.F. STAGES

TR2 and TR3 are both high gain low noise common emitter a.f. amplifiers, and they provide by far the majority of the receiver's overall gain. Both stages are quite conventional. C5 couples the a.f. signal across R1 to the base of the n.p.n. TR2, and C7 couples the output of TR2 to the base of the p.n.p. TR3.

It is important that both the a.f. stages have a reduced response at the higher audio frequencies. since the two transistors are both capable of operating at $v . h . f$. If any v.h.f. signal were to find its way into the a.f. section and be amplified there, the result would be instability and a loss of performance. The reduced response at the higher audio frequencies also provides de-emphasis, which counteracts the treble premphasis present on the transmitted signal. The combined effect of preemphasis and de-emphasis is to give an improved signal-to-noise ratio. The reduction in high frequency response is effected by C6, R4, C8 and C9.
The receiver audio output is taken from TR3 collector by way of jack socket SK1. A direct connection without a series d.c. blocking capacitor is employed here, since a crystal earphone has an extremely high resistance and does not upset the yoltage conditions at TR3 collector. The earphone is not affected by the standing direct voltage át the output socket. Even when magnetic headphones are used it is still unnecessary to have a blocking capacitor, as the headphones simply form a load. in parallel with R6, for TR3 collector.

C10 is the supply decoupling capacitor. The onoff switch, S1, is ganged with VR1. Power is obtained from a PP3 9 volt battery, and the current consumption of the receiver is approximately 3.5 mA only. The battery will thus have quite a long life, even if the set is used frequently.

The BF244B specified for TR1 is available from several suppliers, including Electrovalue Limited.

BUILDING THE SET

The receiver is housed in a plastic Verobox type $65-2520 \mathrm{~J}$, which has dimensions of 150 by 80 by 50 mm . The two controls and the 3.5 mm . jack socket, SK1, are mounted on the lid of the case, which now becomes the front panel for this particular application. Details of the drilling required are given in Fig. 2. The diameter of the hole required for SK1 should be checked from the component itself.
The telescopic aerial is mounted vertically at the extreme left of the case, looking at the front of the set. As can be seen in the photograph of the interior, it is right against the plastic mounting pillars moulded into the case. The type employed

Fig. 2. Three holes are required in the front panel of the plastic case. These are positioned as shown hare
in the prototype has an extended length of 975 mm . and a hinged base section, and is available from Doram Electronics. A 9 mm . diameter hole is drilled in what is now the top of the case, and a 4BA clear countersunk hole exactly below it in the case bottom. The body of the aerial passes through the 9 mm . hole and it is secured at the bottom with a 4BA countersunk screw. A 4BA solder tag is fitted over this screw between the bottom of the aerial and the case inside surface, and connection to the aerial is made by way of this tag.

COMPONENT PANEL

With the exception of C11, all the small com ponents are assembled on a plain perforated s.r.b.p. panel of 0.1 in . matrix and having 31 by 13 holes. The component layout and the underside wiring on this panel are illustrated in Fig. 3.

First, the panel has to be carefully cut out from a

The battery is positioned between the end of the component panel and the telescopic aerial. A piece of foam plastic glued to the inside of the case rear is sufficient to keep it in place

Fig. 3. Wiring of the components on the perforated s.r.b.p. panel

The perforated s.r.b.p. panel with components mounted and external leads attached
larger piece. The components are then fitted, their leads being bent flat under the panel so that they may be soldered together in the wiring pattern of Fig. 3. In some cases the component lead-outs may he too short for the required connections. whereupon tinned copper wire of around 22 s.w.g. can be used to extend any wires where necessary.

Both coils are home-made and are wound using enamelled copper wire of 0.9 mm . diameter (about 20 s.w.g.). L1 is self-supporting and is wound on a temporary former of $\frac{5}{16}$ in. diameter.such as the shank of a twist drill of this size. It has precisely 4 turns equally spaced and its length is 0.4 in . The lead-out wires project downwards and are trimmed to a length of about 5 to 10 mm . The enamel insulation is then scraped off and the lead-outs are tinned with solder. These operations should be carried out before the coil is removed from its temporary former. When the coil has been completely prepared, its lead-outs pass through the appropriate holes in the component panel and are connected into circuit.

L2 is wound on a dust iron core having a diameter of 8 mm . and a length of 17 mm ., this component being available as "Dust Core type 8" from Maplin Electronic Supplies. The winding consists of 13 turns of the same 0.9 mm . enamelled copper wire wound in a single layer around the dust core: these turns will cover most if not all of the core. As with L1, the wire ends are bent down, scraped clean and tinned, before being passed through the holes in the component panel. L2 is not a tuned winding, and its inductance is not particularly critical.

The moving vanes tag of VC 1 is soldered to the panel underside wiring at the position indicated in Fig. 3, using a generous amount of solder. This joint provides the actual mounting for the component panel and causes it to be held in position when VC1 is fitted in the case. C11 is soldered between the moving vane tag and one of the fixed vane tags of VC1. The few remaining connections external to the panel may next be completed, employing flexihle insulated wires. These connections should be fairly short and direct, as long leads trailing around in the case could cause hand-capacitance effects and may also affect performance in other wavs. The lead from hole A19 connects to the track
tag of VR1 corresponding to full anti-clockwise rotation of its control knob. If the lead from the panel to the negative terminal of the battery connector is kept fairly short, this will assist in maintaining the battery in position between the end of the board and the telescopic aerial.

USING THE SET

The set has purposely been designed to cover somewhat more than the normal f.m. Band II so that stray capacitances and small errors in the construction of L1 will not result in part of the band being lost from the coverage of the set. Therefore, no alignment of any kind is necessary.

In order to obtain good results it is essential that VR1 be adjusted properly. By gradually advancing this control while adjusting the tuning control it should eventually be possible to receive a few stations. Further advancing VR1 should result in an increase in quality and volume, but care must be taken not to adjust the detector beyond the threshold of oscillation. This will result in signals being unintelligible, with the set radiating interference which could upset reception on other f.m. receivers nearby.

For those who are unfamiliar with slope detection of an f.m. signal, it should perhaps be explained that the receiver is not tuned to the centre of the signal's bandwidth, as it would be for normal a.m. or f.m. reception. Instead, the tuning is adjusted just off-centre, and it does not matter on which side of the centre the tuning is off-set. In practice, the effect is not excessively noticeable as there is quite a wide range of tuning settings which will produce a satisfactory output with any given signal, and there is only an extremely narrow range of settings at the centre where a completely distorted audio signal is given.
In order to obtain best results it will probably be necessary to tilt the aerial at 45 degrees. Also, the strength of f.m. broadcast signals often varies considerably from one part of a room to another, and it might be necessary to change the position of the set itself in order to obtain optimum reception.

NEW REPLACEMENT FOR QUARTZ

By Michael Lorant

High Q frequency control crystals are now being produced in lithium tantalate

A man-made crystal has become the first practical alternative to quartz for use in communications equipment engineering. The crystal, lithium tantalate, has been custom designed by Bell Systems scientists in U.S.A., and is now being produced at the Merrimack Valley Works of the Western Electric Company, manufacturing and supply unit of Bell Systems. Usage of lithium tantalate is expected to require a production level approaching the present in-house production level for quartz crystal units.

PIEZOELECTRIC

Lithium tantalate has the piezoelectric property of converting mechanical pressure into electric energy and vice versa. In the first planned application of the new material, a frequency-selective filter assembly having two lithium tantalate crystals and five other components will replace an equivalent quartz filter circuit which uses four quartz crystals and fourteen other components.

The development of lithium tantalate has required a background of research and engineering to provide an understanding of the properties of the material, optimum methods of growing and processing it and the circuit designs in which it can best be used.

Lithium tantalate has to be grown at high temperature from a melt of lithium oxide and tantalum pentoxide. The crystal boule, about three in-

David W. Rudd of Western Electric's Quartz Crystal Unit Design and Engineering Department, and Albert A. Ballam of Bell Systems' Crystal Chemistry Research Department. developers of lithium tantalate, adjust the crystal pulling machine in which the new manmade crystals are grown
ches by three-quarters of an inch in size, is cut into small rod-shaped crystals. Many individual experiments were recuired to learn more about the properties of lithium tantalate, including how to handle it, polish it, control its qualities and cut it into device-size crystals.

Here, Albert A. Ballam holds a lithium tantalate crystal with David W. Rudd looking on. Lithium tantalate crystals have 0 factors which enable them to supersede traditional quartz crystal units

The communications industry has a high demand for precise filters and oscillators for frequency selection, rejection and control, this demand largely arising from the economic need to multiplex many information-carrying signals into a single channel. In Bell Systems equipment, quartz crystal resonators are widely used to provide the precise frequency-sensitive elements in oscillators, inductance-capacitance (LC) filter circuits and monolithic filters.

Although quartz occurs in nature, most quartz for commercial use is produced synthetically to ensure a dependable quality and supply of material. Synthetic quartz, also a Bell Systems development, is produced by the hydrothermal process, in which it is crystallised from a water solution at temperatures as high as $1,300^{\circ} \mathrm{F}$, and at pressures up to 50,000 pounds per square inch.

Lithium tantalate, like some grades of quartz, has a low temperature coefficient of frequency. This means that its frequency of resonance is relatively unaffected by temperature changes in its environment. Lithium tantalate also exhibits a low impedance, a high Q, minimum regression to unwanted modes of oscillation, good machinability, low water solubility and an acceptable degree of hardness.

TEAC equipment played a major recording role in the production of "Star Wars", the classic space fantasy that has captured the imagination of the American public and is well on its way to becoming the most successful motion picture ever made.

All the special dialogue and sound effects were recorded and mixed on TEAC equipment under the direction of Ben Burtt. He used an A-7300 and a 2300 open reel deck with a 2340 fourchannel open reel deck and a TEAC Tascam Model 5 mixer to create the sound effects for the galactic languages and creature sounds, planetary vehicles, robots, weapons, and starship battle scenes in space.

The final elaborate stereo sound track was mixed at Samuel Goldwyn Studios in Los Angeles using Dolby noise reduction.
"Star Wars" is a Lucasfilm Ltd. Production, written and directed by George Lucas. He points out that the special photographic work involved as many as 75 people working on two full shifts to execute the 360 separate special effects shots in the film.

AWARD TO BLIND RADIO AMATEUR

Mr. Ted John of Wallasey, who lost his sight on service with the Royal Navy in the Second World War, has been honoured for his service to warblinded radio amateurs. His award, a two feet tall silver cup, was presented to him at the 2nd Annual General Meeting of St. Dunstan's Amateur Radio Society held at Ian Fraser House, Ovingdean, near Brighton.

The cup was given to St. Dunstan's by friends of the late Wally Wardrop, whose contribution to disabled and handicapped radio amateurs was considerable. In its turn, the St. Dunstan's Amateur Radio Society presents the award to the member
whose contribution and participation in the club is deemed to have been outstanding. Because of its size, the cup will remain at Ian Fraser House and Ted has an inscribed shield which he will keep.

Ted John, who works for the Merseyside Police, had already lost his sight when he obtained his transmitting licence, G3SEJ, in 1959, and he is a member of the Wirral Amateur Radio Club.

Nearly thirty licensed amateurs, and short wave listeners - including one lady of $90!$ - meet three times a year at Ian Fraser House. St. Dunstan's is, of course, the organisation which looks after men and women blinded in the services.

ELECTRONIC DIGITAL STOPWATCH HAS BUILT-IN CALCULATOR

ST-1 is a new type of one-tenth second stopwatch from Casio Electronics Co. It has four timing modes: standard stop/start with automatic reset to zero at every start; time-out or net timing where each restart carries on from the previous stop time; normal lap timing with each stop indicating the total time elapsed from original start; and split lap timing where each stop gives an indication of time elapsed since the preceding stop.

In addition Casio ST-1 has a totaliser. In standard stop timing it tells you of the total of, say, a series of heats (from which an average can be calculated on the same machine). In the time-out mode it can be used to indicate time lost during stoppages. And in split timing, it adds the splits to give an overall time.

As an extra, the ST-1 is also a calculator. One that can add, subtract, multiply and divide - both in ordinary decimal arithmetic and in hours, minutes and seconds. It has an independent memory and handles percentages and square roots.

Timing capacity is one-tenth of a second short of ten hours, calculation capacity eight digits, or one second short of 100 hours.

Measuring approximately $5 \times 3 \times 1$ inches and weighing under 5 ounces complete with its AA size battery, Casio ST-1 sits neatly in the hand. Supplied with a security wrist strap, this versatile
 little instrument has a recommended retail price of only $£ 29.95$.

COMMENT

THE ULTIMATE IN TAPE RECORDERS?

The BBC and the 3M Company, of St Paul, Minnesota, U.S.A., have collaborated in the development of a digital audio recording system which promises to revolutionise professional sound recording. The use of digital techniques derived from computer technology has resulted in a system which is virtually distortionless and noise free - a performance unattainable with conventional analogue techniques.
The system is the result of research conducted by the BBC and 3 M . The BBC has pioneered the use of digital techniques. The 3 M Company has been a pioneer in the US in the development of magnetic tapes for computer, video and audio applications and is a leading manufacturer of professional audio equipment and tape. This technological achievement is particularly significant because earlier attempts at digital audio recording required huge quantities of magnetic tape and too many recording tracks.
The advantages of the new system include the absence of tape noise, modulation noise, distortion and flutter. The highest grade of ordinary (analogue) recording system now available has a signal-to-noise ratio of some 68 dB . This can be improved only by expensive techniques which entail some loss of fidelity. Figures released by 3M show that the new digital system is achieving better than 90 dB , that is it can handle at least a greater range of sound intensity.

CABLE STRIPPER

The photograph shows the new MK02 cable stripping tool which has been developed by $A B$ Engineering Co. from their well established range of hand tools and cable strippers. The new tool has an additional facility for longitudinal slitting of power cables.

Suitable for all sizes of round cable from 4.5 to 28.5 mm . diameter, the MK02 features an adjustable cutting blade which can be set by turning a knurled screw to match the thickness of insulation to be stripped. The cable is retained by a spring loaded gripping clamp, and simple rotation of the tool round the cable cuts cleanly through the insulation. The cutting blade is then turned through 90 degrees by depressing a knob on the side of the tool, this allowing the insulation to be cut along its length and simply peeled away from the core.
Further details can be obtained from AB Engineering Co., Apem Works, St. Albans Road, Watford. WD2 4AN.

FRESH BOOK ON MICROWAVES

The Microwave Division of Marconi Instruments Ltd, has recently published a book entitled 'Experimental Microwaves', by A. W. Cross. Aimed at HNC students, it avoids a highly theoretical treatment and concentrates on experimental techniques for measuring phenomena in waveguides.

The book begins with a fundamental description of what is happening in a wave-guide, including basic theory, but mathematics is kept to a minimum. The second part covers the purpose and operation of each instrument on the test bench and is followed by a series of experiments which can be performed to demonstrate the various measuring techniques. The final section contains logarithmic and other tables.
"Experimental Microwaves' is a 147 page large format book with many diagrams and tables. Copies, price $£ 8.50$, are available from the Publicity Department of Marconi Instruments, Longacres, St. Albans, Herts, AL4 0JN.

EVENT FOR THE NEW BANK HOLIDAY

Frank Osborn, G2CV0, who is Town Mayor of Mersea, Mersea Island, Essex, and also a Vice President of the Mersea Island Museum, is, with the help of members of the Calchester Radio Club, setting up a station within the museum covering the new Bank Holiday weekend April 29th, 30th and May 1st.

Any readers wishing to visit the station would be very welcome. The museum is adjacent to West Mersea Church, is close to the beach, and there is free parking near at hand.

RADIO 3 EXCLUSIVE

The Test and County Cricket Board have agreed terms with the BBC on a new contract, giving BBC Radio exclusive 'live' coverage of cricket for the next three years.

"No, Mrs. Scroggins, it's not convenient for a Brain Washing just now!"

SUGGESTED CIRCUIT

on-OfF SEQuence switch

By G. A. French

One of the simplest latching circuits incorporating discrete transistors is that shown in Fig. 1. Each transistor is a silicon type, which means that bias current can only flow into its base to turn the transistor on when the base-emitter potential is about 0.6 volt. When the transistor is turned on close to saturation the collector-emitter voltage is typically about 0.1 volt, and in practice may be anywhere between nearly zero and 0.2 volt.

Let us assume that TR1 is on. In this condition its collector is 0.2 volt or less positive of the negative rail, whereupon base current cannot flow into TR2 via R2. TR2 is therefore turned off. It passes no collector current and base current can flow into TR1 via R4 and R3. If on the other hand it is TR2 which is on, its collector is at 0.2 volt or less positive of the negative rail and this prevents base current flowing into TR1 by way of R3. TR2 is then held turned on by the base current flowing through R1 and R2.
After switch-on either TR1 or TR2 may turn on in random manner, with the transistor having
the higher gain probably being that which is turned on more frequently. The transistor which is turned on can be turned off by momentarily short-circuiting its base to the negative rail. The other transistor will then turn on and stay on. The circuit is stable and remains latched with either transistor on.

SEQUENCE SWITCH

By the addition of a few components it is possible to employ the circuit as an on-off sequence switch which changes state after each closure of the contacts of a pushbutton. The modified circuit is shown in Fig. 2. In this diagram C1 is a plastic foil capacitor, either polyester or polycarbonate, and is not electrolytic. For the time being we shall ignore the presence of R6 and C 2 .

Let us start an examination of the circuit when, with S2 closed and the 9 volt supply applied, TR1 is on and TR2 is off. C1 is charged, via R5, to the same low potential as that on TR1 collector. When pushbutton S1 is pressed, its contacts

Fig. 1. A simple latch circuit incorporating two small silicon transistors. The circuit is stable with either transistor turned on and the orher turned aff
close and cause the low voltage on the upper plate of C 1 to be applied to the base of TR1. Since this voltage is well below 0.6 volt above the negative rail, TR1 at once turns off and TR2 turns on. The circuit remains completely stable under these conditions, because the upper plate of the capacitor couples via R3 to the low voltage which is now present at the collector of TR2. Because R3 is one-hundredth the value of R5, the voltage across the capacitor is only fractionally higher than that at TR2 collector despite the fact that R5 now couples to a relatively high voltage (of about 6 volts) at the junction of R1 and R2.
When S1 is released the circuit stays in the same condition, but C 1 now charges, via R5, to the voltage at the junction of R1 and R2.
If S 1 is pressed again the high voltage which is now present on the upper plate of C 1 is applied to the base of TR1, causing it to turn on abruptly with, in consequence, TR2 turning off. Again, the circuit is stable in this condition whilst the button is pressed because C1 is maintained charged to 0.6 volt by way of the current flowing into TR1 base via R4 and R3. When S1 is released, C 1 is disconnected from the base of TR1 and C1 discharges, via R5, to reach the low voltage at TR1 collector.
Should S1 be pressed again, the base of TR1 will be taken to this low potential, TR1 will turn off, and the first switching operation described earlier will once more take place.
Thus, pressing S1 first turns TR1 off and TR2 on, whilst the second closure of its contacts turns TR1 on and TR2 off. The third operation of S1 will turn TR1 off again, and the circuit continues to function successively in this manner.

Fig. 2. Adding two resistors, a capacitor and a push-button allows the circuit to function as a sequence switch. The transistors change state each time the push-button is pressed

ASYMMETRIC OPERATION

The operation of the circuit is asymmetric in terms of time because the effective discharge of C1, when S1 is released after TR1 has turned on, is slower than the effective charge of $C 1$ when $S 1$ is released after TR1 has turned off. The terms "effective discharge" and "effective charge" here mean the amounts of discharge and charge which are necessary to allow C1 to initiate the following changeover of state when S1 is next pressed. As a result, it is necessary to wait longer before pressing the button when TR1 has turned on than it is when TR1 has turned off. However, both periods of time are considerably less than one second and the asymmetry will normally not even be noticed. There is, in practice, little point in complicating the very simple circuit of Fig. 2 by adding components which will remove the asymmetry.
We have not yet considered R6 or C2. R 6 is merely a current limiting resistor, and it limits to about 22 mA the initial current from C 1 into the base of TR1 when S1 is pressed with TR1 turned off. The value of R6 is much lower than those of the
other resistors in the circuit and it has no effect on circuit operation.

The purpose of C 2 is to ensure that TR2 is always the transistor which is turned off when the supply is applied. Its presence very slightly delays the rise in TR2 base voltage when S2 is closed, and it thereby allows TR1 to be the transistor which turns on first. C2 is fully effective when the supply is turned on abruptly, as with the on-off switch of Fig. 2, but it may be less effective if the supply voltage rises at a much slower level at switch-on, as can occur if the 9 volts is provided by a mains power supply having a large value of reservoir and smoothing capacitance following the rectifier circuit. In this instance, C2 can control conditions after switch-on if its value is increased but, should its value be raised significantly higher than some $0.02 \mu \mathrm{~F}$, it may start to upset the sequential action given by pressing S1. Thus, the circuit may not be suitable for applications in which the supply voltage, after switching on, rises only slowly to its full value.
If it is unimportant whether either TR1 or TR2 is off after switch-on, then C2 can be omitted
and the circuit can be powered by any type of supply offering 9 volts. The circuit will function, incidentally, at supply voltages well below 9 volts and down to 6 volts or less.

The current drawn from a 9 volt supply is of the order of 2.5 mA .

EXTERNAL CIRCUIT

The on-off sequence switch will normally be required to control an external circuit, and in quite a few instances where only low currents are involved it may be possible to simply work from the voltage which is present at the collector of TR1 or TR2.

Where high currents are to be controlled an added transistor operating a relay can be employed, and a suitable circuit is shown in Fig. 3. No current flows into the base of the added transistor when TR2 is turned on, and the relay is de-energised. When TR2 turns off, a current of around 0.4 mA flows into the base of the added transistor via the series $10 \mathrm{k} \Omega$ resistor, and the transistor then causes the relay to be energised. The usual diode is connected across the relay coil to prevent the appearance of a high back-e.m.f. when the relay deenergises, and this can be a 1 N 4002 , as shown, or any other small silicon rectifier.

Fig. 3. An external circuit can be controlled by means of an added transistor and a relay

The relay can be any type having a coil resistance of 300Ω or more, and which is capable of energising reliably at a coil voltage somewhat below the supply voltage.

Mail Order Protection Scheme

The publishers of this magazine have given to the Director General of Fair Trading an undertaking to refund money sent by readers in response to mail order advertisements placed in this magazine by mail order traders who fail to supply goods or refund money and who have become the subject of liquidation or bankruptcy proceedings. These refunds are made voluntarily and are subject to proof that payment was made to the advertiser for goods ordered through an advertisement in this magazine. The arrangement does not apply to any failure to supply goods advertised in a catalogue or direct mail solicita-

If a mail order trader fails, readers are advised to lodge a claim with the Advertisement Manager of this magazine within 3 months of the appearance of the
advertisement.

For the purpose of this scheme mail order advertising is defined as:

> "Direct response advertisements, display or postal bargains where cash has to be sent in advance of goods being delivered."

Classified and catalogue mail order advertising are excluded.

WINDSCREEN WASHER LEVEL MONITOR

Single i.c. CMOS circuit keeps constant check on windscreen washer water level

This device was designed to ease the burden on the inveterate non-checker of car fluid levels, the driver who discovers his windscreen washer bottle empty half-way along the M1 or in the wilds of the Scottish Highlands. The main requirement is that the car should have a semi-rigid insulated washer bottle, such as are found on Minis and Cortinas. The car supply should be 12 volts nominal, and can be either negative or positive earth.

The circuit gives a two-fold warning of reduction in the water level of the car windscreen washer bottle. An l.e.d. glows steadily to indicate a drop of level below, say, half-full. Should the level be allowed to fall further the same l.e.d. will flash at a constant rate when the bottle is nearly empty. The unit, which takes approximately 40 to 50 mA of current at maximum, may be switched via the ignition switch. The device will reset itself should the washer bottle be refilled.

NEGATIVE EARTH CIRCUIT

The level monitor circuit for a negative earth system is shown in Fig. 1. In this, IC1 is a CD4011 quad 2 -input NAND gate, and it will be remembered that the output of a NAND gate is at logic O (negative) only when all its inputs are at logic 1 (positive). The NAND gate output is at logic 1 for all other input conditions. In the diagram the negative rail is shown above the positive supply rail. The negative rail corresponds to the potential of logic 0 whilst the lower positive rail corresponds to the potential of logic 1 .

Gates 1 and 2 of the CD4011 form an astable multivibrator which, with the values specified for $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$ and C 2 , has a rate of pulsing at about 2

Fig. 1. The water level monitor circuit for use in cars having a negative earth
flashes per second. A faster flashing rate can be obtained by using $0.33 \mu \mathrm{~F}$ capacitors for C 1 and C 2 , and a slower flashing rate by using $0.68 \mu \mathrm{~F}$ capacitors. The output of the multivibrator is applied to an input of gate 3 . The multivibrator runs continuously as soon as the supply is applied.

Terminals A, B and C connect to the water level sensing probes, these being in actual contact with the water in the washer bottle. When the water is at an adequate level it completes the circuit between terminals C, B and A, causing one input of gate 3 and one input of gate 4 to be held negative at logic 0 . Both gates therefore have a logic 1 (positive) at their output. The logic 1 at the output of gate 4 is passed via R5 to the base of TR1 whereupon, since this is a p.n.p. transistor, it remains cut off. In consequence it passes no collector current and the 1.e.d. is not alight.

As the water is used its level falls until the circuit between terminals C and A is broken. The input from the sensor to gate 4 is then pulled by R4 to a logic 1 . Since the other input of gate 4 is also at $\operatorname{logic} 1$, its output falls to logic 0 (negative). This negative voltage causes base current to flow in TR1 via R5 and the transistor turns on, causing the 1.e.d. to be lit.

When the water level falls further, towards the washer bottle being nearly empty, the circuit breaks between terminals C and B. R3 pulls the associated input of gate 3 to a logic 1 , so that its output can fall to a logic 0 when its other input is also at logic 1. However, this other input is connected to the output of the multivibrator given by gates 1 and 2 , and this output is changing continually from logic 0 to logic 1 as the multivibrator oscillates. Thus, the output of gate 3 is at logic 1 when the multivibrator output is at logic O , and vice versa. This continuously changing output is fed into gate 4 , the output of which correspondingly changes continually from logic 0 to logic 1 and back again. As a result, transistor TR1 is turned on and off at the multivibrator frequency and the l.e.d. flashes accordingly.

Refilling the washer bottle will first cause the flashing to stop and then, when there is sufficient water to complete the circuit between terminals C and A, cause the l.e.d. to extinguish.

COMPONENTS

The l.e.d. can be any 0.2 in . red type with a maximum current rating of 50 mA or more. Very nearly all small l.e.d.'s fall into this category, and a particularly suitable type is the red FLV117 available from Bi-Pak Semiconductors. TR1 must be a p.n.p. type, preferably the type specified which has adequate gain. R6 could be increased up to about 820Ω, to dim the l.e.d., but it was found that the value of 360Ω gives sufficient brightness to be seen

COMPONENTS

Reststors

(All $\frac{1}{\dagger}$ watt 10% unless otherwise stated)
R1 1 Ma
R2 1M Ω
R3 1M Ω
R4 1M Ω
R5 8.2 k 几
R6 $360 \Omega \frac{1}{2}$ watt
Capacitors
C1 0.47μ F type C280 (Mullard)
$\mathrm{C} 20.47 \mu \mathrm{~F}$ type C280 (Mullard)
Semiconductors
IC1 CD4011 (negative earth)
CD4001 (positive earth)
TR1 BC157 (negative earth) BC108 (positive earth)
D1 1N4001
D2 1N4001
LED1 red l.e.d. (see text)
Miscellaneous
Veroboard, 0.1 in. matrix
Aluminium sheet (for l.e.d. panel)
14 -pin i.c. holder, d.i.l.
3 brass or stainless steel pins (see text)
4 -way terminal block (see text)
6BA bolt, lin.; and nut
Connecting wire, etc.
in daylight. A lower value for $R 6$ is not recommended as it could destroy the l.e.d. by allowing too much current to pass. Diodes D1 and D2 give 1.2 volts extra protection to the i.c. by raising the safe supply voltage maximum to 16.2 volts. This point applies to the CD4011AE, with its maximum supply voltage rating of 15 volts. If a CD4011BE is employed, the diodes can be left out as the BE suffix indicates an operating voltage up to 18 volts recommended. CD4011BE i.c.'s are becoming more readily available, but check the actual type number of the i.c. itself before deciding whether or not to omit the diodes.

To avoid possible damage to the i.c., a 14 -way i.c. holder is wired into the circuit. The i.c. is then plugged into this holder when all wiring is completed.

As will become apparent later, the probes connected to terminals A, B and C are in an environinent where the insulating between them may be reduced by dirt, grease or moisture. Should this occur, the values of R3 and R4 may be too high to pull the appropriate gate inputs to a logic 1 when the water level falls. If this effect occurs or seems

The components are assembled on a piece of Veroboard measuring approximately 1 in . by 5 in .

NEGATIVE EARTH

Fig. 2. Component and copper sides of the negative earth version Veroboard
possible the values of R3 and R4 may be reduced to $100 \mathrm{k} \Omega$. However, the author has experienced no trouble on this score with the prototype, and with R3 and R4 at the specified value of $1 \mathrm{M} \Omega$.

CONSTRUCTION

The electronics are assembled on a piece of 0.1 in . Veroboard, the component and copper sides of which are illustrated in Fig. 2. This is for the negative earth version of the ievel monitor. Connections to the positive and negative supply inputs and to the sensor are made via a 4 -way terminal block. The latter is a plastic block of the type which can be cut out from a longer length. It is secured to the Veroboard by a single 6BA bolt and nut, as indicated. (This bolt and nut are also used for the l.e.d. front panel and for fixing the board to the car dashboard.)

First make the cuts in the copper strips as indicated. In some places, as for example under the i.c., the copper is removed over an area of two holes or more instead of relying on the more conventional single hole breaks. This approach is not essential, but it ensures a high level of insulation across the breaks. The i.c. socket is next fitted, after which bridges between adjacent tracks are made on the copper side of the board. An insulated lead on the copper side also bridges together pins 1 and 10 of the i.c.

On the component side of the board, connecting wires, resistors, capacitors, diodes and the transistor are soldered, in that order, into place.

Next, make up the front plate for the l.e.d., as illustrated in Fig. 3(a). This can be made from aluminium sheet. The position shown for the 6BA clear hole is that applicable to the particular terminal strip employed by the author, and may vary slightly with other terminal strips. In consequence, the front plate may be passed under the terminal strip and the position of the hole marked up with its aid. Fig. 3(b) shows how the, Veroboard assembly was mounted under the car dashboard, using the same 6BA screw and nut which secure the l.e.d. front plate and terminal block. In practice, the board will not be fitted in the car until later, and some constructors may prefer to use alternative fixing methods to that illustrated.

At the present stage of construction, secure the terminal strip, front plate and Veroboard together with the 6BA bolt and nut. Mount the l.e.d. in place with a dab of glue. The anode lead-out connecting to R6 may need to be extended. Be sure to connect the l.e.d. the correct way round by following the data on it, if available. If the lead-outs are not known, connect the l.e.d. experimentally to a 3 volt battery with a $1 \mathrm{k} \Omega$ resistor in series with one of its leads. When the l.e.d. lights up, it is the anode lead-out which connects to the positive terminal of the battery.

Finally, fit the i.c. into its holder, making sure that it is correct way round.

SENSOR

Fig. 4 shows the construction of the sensor. The probe pins are fitted at the levels required for monitoring, and the wires from points A, B and C are taken to the terminal block on the Veroboard panel. The terminal block and pin assembly is fitted to the wall of the washer bottle by simply pushing the pins through the plastic. A rigid or

Fig. 3(a). Details of the front plate, on which is mounted the l.e.d. The position of the GBA clear hole may need to be varied to suit some terminal blocks. (b). One method of fitting the board and l.e.d. assembly to the car dashboard

Fig. 4. The water level sensor head. The pins detect the level of the water

The underside of the
Veroboard
semi-rigid bottle is best for this. To prevent leakage, the joins between pins and plastic can be coated with epoxy resin. The bottle may then be fitted to the car and the three leads taken into the driver's compartment via a suitable grommet.

The material of which the pins are made is important. In one version of the sensor the author used so-called "stainless steel" pins but these rusted after some 4 or 5 months. The pins should therefore be real stainless steel or brass. The author's original version, with brass pins, is still going strong after about a year's use.

FITTING INTO THE CAR

To prevent spurious operation the underside of the board should be varnished with two coats of lacquer, and if the underside will touch bare metal than it should be protected by a layer of insulating material. Now fit the leads A, B and C, and attach the unit to a suitable ledge, as indicated in Fig. 3(b) or employing any other mean of mounting which may be favoured. When firmly fastened, connect the power leads, running one through the ignition switch if required. The water bottle should be empty or nearly empty. On turning the ignition key the l.e.d. will commence flashing. Filling the washer bottle will first make the l.e.d. glow steadily and then turn it out. The unit is now operational.

Should no light appear at first switch-on, check the l.e.d. connections and then the joints around gates 3 and 4 of IC1. Should these seem satisfactory, cover the lower sensor contacts with water and re-examine the l.e.d. If it is alight the fault lies with the multivibrator. Check its connections, especially those around the capacitors. If the l.e.d. is not alight then check the connections at TR1. No
light at this point would indicate a failure in the l.e.d., TR1 or IC1. While checking any CMOS circuit it is imperative that the power be disconnected and the i.c. removed. It is preferable also that the i.c. be out of its socket whilst the unit is being wired up and fitted into the car. The i.c. leads should not be handled, and when not in its socket the i.c. leads should always be inserted in the conductive foam or foil with which it is supplied. (The author's approach with CMOS i.c.'s is to hold them with a bulldog clip before removing the i.c. from the foam or foil so that the pins are all short-circuited together. It is then fitted into its socket with the clip attached, after which the clip is removed. In the present application the clip could be retained until after the unit has been installed and wired up in the car).

Although the prototype has operated perfectly since its installation, one point has arisen. When the water level is just at the sensor points in the bottle, driving over bumpy ground or around corners can cause the l.e.d. to flicker on and off. Should this be found disconcerting then all you have to do is refill the bottle, which after all is the reason for building the device.

POSITIVE EARTH VERSION

The level monitor as so far described is intended for a car with a negative earth. With this the water in contact with sensing pin C is also at the same potential as the car earth.

It is simple to devise a modification which allows sensing pin C to be at the same potential as a positive car earth, and a suitable circuit is shown in Fig. 5. This time the i.c. is a quad 2 -input NOR.

Fig. 5. The circuit required for the positive earth version of the fevel monitor

POSITIVE EARTH

The attachment at the water bottle. The particular installation shown here has relatively close spacing of the sensor pins
gate type CD4001. The output of a 2 -input NOR gate is only at logic 1 when both its inputs are at logic 0 , so that it acts as a NAND gate for negative logic.
In Fig. 5, gates 1 and 2 function as a multivibrator in the same way as did gates 1 and 2 in the negative earth circuit. When the water in the washer bottle connects together terminals C, B and A, a logic 1 is applied to gates 3 and 4, so that their outputs are both at logic 0 . TR1 is now an emitter follower and, since its base is held at the same potential as the negative rail by gate 4 output, the l.e.d. does not light. As the water falls below sensing pin A, R4 pulls the appropriate input of gate 4 to logic 0 , whereupon its output goes to logic 1 and TR1 causes the l.e.d. to light.

When the water falls below sensing pin B, R3 takes the appropriate input of gate 3 to logic 0 , with the result that its output changes from logic 0 to logic 1 according to its input from the multivibrator. As before, this causes the l.e.d. to flash.
The two diodes in the negative supply lead permit the use of a CD4001AE for IC1. If a CD4001BE i.c. is used the diodes may be omitted.

Fig. 6 illustrates the component and copper sides of the Veroboard for the positive earth version. The comments concerning this and its installation in the car which were made for the negative earth circuit apply similarly to the positive earth version.

UNDERSTAND DATA PROCESSING

DATA PROCESSING, by Oliver \& Chapman, is now in its Third Edition - first published-1972.

200 pages $9 \frac{3}{4}^{\prime \prime} \times 6 \frac{33^{\prime \prime}}{} \quad$ PRICE $\mathbf{£ 2 . 7 5}$
Inclusive of postage

PUBLISHED BY D. P. PUBLICATIONS

The primary aim of this outstanding manual is to provide a simplified approach to the understanding of data processing - (previous knowledge of the subject is not necessary).

The 40 chapters and appendices cover the following topics: Introduction to Data Processing; Organisation and Methods; Conventional Methods; Introduction to EDP and Computers; Hardware; Computer Files; Data Collection and Control; Programming and Software; Flowcharts and Decision Tables; Systems Analysis; Applications; Management of EDP, etc.

RADIDAEHENTHS CONSTRUCTOR

in our next issue SIMPLE I.C. DIGITAL CLOCK

ATTRACTIVE DESIGN

SIMPLE CIRCUITRY

READILY AVAILABLE COMPONENTS

TV SOUND ADAPTOR

Improve the sound from your TV with this unit which extracts the sound channel without a direct connection.

MANY OTHER ARTICLES

ON SALE 3rd MAY
Avoid disappointment. ORDER NOW

BACK NUMBERS

For the benefit of new readera wo would draw attgntion to our back number service.
We retain past issues for a period of two years and we can, occasionally, supply copias more than two years old. The cost is 58p, inclusive of postage and packing.

HIGH GAIN DISC

 TV ANTENNABy Ivor N. Nathan

Low-cost homely materials are all that are needed for this u.h.f. indoor TV aerial.

This u.h.f. antenna is similar in design and pers formance to a parabola antenna; a flat disc is used in this instance only because it is more convenient for the amateur constructor to either make or obtain. In the author's case, the body of the disc consisted of a long discarded 78 r.p.m. 10in. record, the hole in the centre being an ideal entry point and anchor for the coaxial cable feeder. The 10in. diameter is correct for the u.h.f. television band, and all that is required to convert the disc into a metallic reflector is a sheet of household aluminium foil (i.e. baking foil) sufficient to cover both sides of the dise in one piece. Accordingly, a sheet of aluminium foil approximately 2 ft . square should be neatly folded around the disc to completely enclose it, having first applied a liberal amount of adhesive to both sides of the disc. The foil should be unbroken on the disc surface behind the dipole. Strips of Sellotape are used to seal the edges of the foil that show on the other side.

HALF WAVE DIPOLE

The energised element of the antenna is a half wave dipole, and this is made by opening out the end of a length of low-loss u.h.f. coaxial cable, as in Fig. 1. Sufficient cable should be used so that the dipole and feeder consists of one continuous length of cable; this avoids the need for any joins and ensures good matching and minimum signal losses.

Feed one end of the cable through the hole in the disc's centre, having first carefully punctured the

Fig. 1. Praparing the ond of a coaxial cable so that the inner conductor and the braiding form the two halves of a dipole
aluminium foil on both sides of the hole. Ensure that sufficient cable has been fed through to provide easy access to the cable end so that the dipole can be cut. The dipole is made by first cutting away $4 \frac{1}{2} \mathrm{in}$. of outer insulation from the end of the cable. If the inner conductor and its insulation are carefully drawn through a gap in the braiding so as not to damage the braiding, and as close as possible to the outer covering of the cable, the two halves of the half wave dipole can then be bent into shape. The half that is formed from the inner conductor, still carrying its own insulation, is completely self-supporting but the half that is formed from the braiding will probably not be. This can be remedied by completely sleeving both halves of the dipole with spare lengths of cable outer insulation.
The aerial input socket of the television receiver should be fully isolated, by its manufacturer, from mains voltages. Nevertheless, it is preferable to ensure that there is no exposed metal in the dipole, and the sleeving over the dipole halves provides insulation in addition to stiffness. Ensure that all metallic parts of the dipole are completely covered by sleeving; any doubtful gaps can be covered with a liberal coating of Araldite, which will also add strength to the dipole's construction.

Each piece of sleeving should actually be approximately 1 in . oversize. A piece of insulating material, such as a spare piece of coaxial inner cable insulation with the inner conductor removed, can then be inserted to plug each of the two dipole ends. The dipole is then bent approximately into the shape shown in Fig. 2, and a coaxial plug fitted to the remote end of the cable.

DIPOLE ADJUSTMENT

Because the distance between the dipole and the disc reflector is quite critical, it is best to adjust this distance with the television receiver operating in order to obtain optimum results. Observing the correct propagation polarity for the group of channels to be received, tune the receiver to a midband channel then adjust the distance between the dipole and disc reflector for maximum signal. The position of the dipole is now made permanent by spreading a ring of Araldite at the junction of the cable and the disc on both sides of the disc; when set hard the rings form a cable support and also prevent the dipole from moving. Using this method of obtaining maximum gain and optimum matching obviates the need for any balun device. The dipole ends are then cemented to the disc with

Fig. 2. After adjustment the dipolo has approximately the shape shown here

Fig. 3. A plece of vinvl, with a central hole is allow the passage of the coaxial cable, is glued to the rear of the reffacting disc

Araldite.

A sheet of stiff vinyl 12 in . square is next glued to the back of the disc, partly to protect the aluminium foil but mainly to help anchor the cable and also to provide a means of suspending the antenna in its operating position. Small screws can be driven through the vinyl, clear of the disc, into any suitable supporting surface, such as the

wooden 'beams within a roof space. Figs. 3 and 4 show the final assembly. An alternative to the vinyl sheet is plywood.
The antenna was compared with a 7 -element Yagi and gave roughly equivalent results. Experimenters may wish to construct a ruggedised externally mounted version of this antenna, using a solid metal disc reflector.

TELEPHONE AMPLI

By A. P.

The purpose of this unit is to amplify the output from a telephone so that it is at loudspeaker volume. The main advantage provided is that this enables more than one person to hear the conversation, but it can also be useful in noisy environments where the low volume sound from a telephone handset can be difficult to understand. Sometimes a poorly connected call can be hard to comprehend due to a lack of volume, and the additional gain of a telephone amplifier can be very helpful under these circumstances.

A subscriber is not allowed to make a direct connection to a telephone, and so some indirect means of picking up the telephone signal must be used. Telephones contain inductors which radiate the signal in the form of a stray magnetic field, and it is from this field that the signal for the present unit is derived. Such a process is the conventional method for obtaining an input signal for an amplifier of this type.

THE CIRCUIT

The circuit diagram of the telephone amplifier is shown in Fig. 1. L1 is the pick-up coil, and this is simply a 10 mH ferrite cored r.f. choke. Special telephone pick-up coils were readily available some years ago, but appear difficult to obtain at the present time. However, the r.f. choke operates perfectly well in this application.
Only a very small output signal, of less than a millivolt, is produced by the pick-up coil, and this signal is at a fairly low impedance. TR1, which is used as the pre-amplifier, is therefore connected in the common base configuration. The common base mode of operation provides a low inputimpedance and a high voltage gain. R2 is the collector load resistor and R1 provides base biasing, whilst C2 bypasses the base of TR1 to the negative supply rail. L1 completes the emitter circuit of TR1 at d.c., as well as injecting the input signal.

C3 rolls off the upper frequency response of the circuit, and this is done for two reasons. First, the circuit has quite a high level of gain and a frequency response which would otherwise extend well into the radio frequency spectrum. Without treble rolloff the gain at high frequencies could lead to instability. Second, the higher audio frequencies contribute very little to the intelligibility of telephone speech, and so an improved signal-to-noise ratio is produced by the treble cut.
Similarly, bass frequencies do not serve any useful purpose as far as telephone transmission of speech is concerned, and it is usually considered beneficial to roll them off also. This is achieved by employing interstage coupling capacitors having rather low values.

Bring your conversations loudspeaker le battery opera:

PHONE AMPLIFIER

By A. P. Roberts

Bring your telephone

 conversations up to loudspeaker level with this battery operated amplifier

Fig. 1. The circuit of the telephone amplifier. In use the jack plug connecting to 41 is inserted in SK 1

FIER

Roberts

r telephone
 s up to

level with this ated amplifier

COMPONENTS

Resistors
(All fixed values $\frac{1}{4}$ watt 10%)
R1 $2.2 \mathrm{M} \Omega$
R2 5.6 k 』
R3 $1 \mathrm{k} \Omega$
R4 4.7 k ת
R5 $2.2 \mathrm{M} \Omega$
R6 680Ω
R7 470Ω
VR1 $10 \mathrm{k} \Omega$ potentiometer, \log, with switch S1
Capacitors
C1 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C2 $2.2 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
$\mathrm{C} 30.01 \mu \mathrm{~F}$ type C280 (Mullard)
C4 $0.1 \mu \mathrm{~F}$ type C280 (Mullard)
C5 $0.01 \mu \mathrm{~F}$ type C280 (Mullard)
C6 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C7 0.047 $\mu \mathrm{F}$ type C280 (Mullard)
C8 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
C9 $100 \mu \mathrm{~F}$ electrolytic, 10 V . Wkg.
Inductor
L1 10 mH r.f. choke type CH4 (Repanco)
Semiconductors
TR1 BC109
TR2 BC109
IC1 LM380
Socket
SK1 3.5 mm . jack socket
Speaker
LS1 approx. 2.5in. diameter, 8Ω to 35Ω
Switch
S1 s.p.s.t., part of VR1
Miscellaneous
Plastic case, approx. $150 \times 80 \times 50 \mathrm{~mm}$.
Plastic case, approx. $71.5 \times 49 \times 24.5 \mathrm{~mm}$.,
Verobox type 75-1469 or similar
9 volt battery type PP6 (Ever Ready)
Battery connector
Veroboard, 0.1in. matrix
Control knob
3.5 mm . jack plug

Screened cable
Speaker fabric
Wire, screws, nuts, etc.

The telephone amplifier in use. The pick-up coil is housed in the small plastic box at the left of the telephone base

The output from TR1 is fed to volume control VR1 via the d.c. blocking capacitor, C4. From here the signal is coupled to another amplifier stage by way of C5. This second stage of amplification incorporates TR2, wired in the common emitter mode. The stage is quite conventional except for the inclusion of the unbypassed emitter resistor, R6. R6 introduces a large amount of negative feedback to the stage and reduces its gain, which would otherwise be excessive.
An LM380 i.c. is used as the output amplifier, and this device requires very few external discrete components. C7 provides d.c. blocking at the input while C8 provides the same function at the output. The voltage gain of the amplifier is set at 50 by an internal feedback circuit. The i.c. has both inverting and non-inverting inputs, and in this application it is the latter which is used. The inverting input is connected to the negative supply rail so that it cannot pick up noise due to stray couplings.
An output power of a few hundred milliwatts can be provided by the LM380 under these circumstances, which means that the device is being used well within its capabilities. The i.c. cannot, in any case, be damaged by overloading as it has both thermal shutdown and output short-circuit protection. The prototype is used with an 8Ω impedance speaker. However, a wide range of speaker impedances will prove satisfactory, and any speaker impedance between 8Ω and 35Ω will be suitable.
As the LM380 has a Class B output and the overall gain of the circuit is very high, it is absolutely essential that the supply lines be very well decoupled. This function is performed more than
adequately by $\mathrm{C} 1, \mathrm{R} 3, \mathrm{C} 6, \mathrm{R} 7$ and $\mathrm{C} 9 . \mathrm{S} 1$ is the onoff switch, and is ganged with VR1. The quiescent current consumption of the amplifier is about 10 mA , but this figure is considerably exceeded at high volume levels.
The $2.2 \mu \mathrm{~F}$ electrolytic capacitor, C 2 , is shown in the Components List as having a working voltage of 10 volts. In practice this capacitor can have a working voltage well in excess of this figure, a typical value being 63 volts.

CONSTRUCTION

All the small components are assembled on a piece of 0.1 in . matrix Veroboard having 14 strips by 33 holes. Both sides of this panel are illustrated in Fig. 2, which also shows the other wiring of the unit. After a panel of the correct size has been cut out with a hacksaw the 16 breaks in the copper strips are made, following which the two 6BA clear mounting holes are drilled. The various components can then be soldered into position, as well as the four link wires. The LM380 has its central pins, $3,4,5,10,11$ and 12 , at the same potential as the negative rail. All these pins are soldered to the copper strips at the holes through which they pass.
A plastic box which measures about 150 by 80 by 50 mm . deep is used as the housing for the prototype, but any plastic case of the same size, or somewhat larger, which can accommodate the components will be equally suitable. The speaker is mounted on the left hand side of the front panel of the box, and it requires a cut-out of about 50 mm . in diameter. This can be made with the aid

of a fretsaw or a miniature round file. A piece of speaker fabric is then glued in position at the rear of the cut-out, and the speaker is then carefully glued onto this. Use only a small amount of adhesive, so that none comes into contact with the speaker cone or surround. Also, use a good quality adhesive, such as an epoxy type.
VR1/S1 and SK1 are mounted on the right hand side of the front panel, with VR1/S1 above the socket as can be seen from the photographs of the prototype.
The component panel is fitted at the top of the case above the loudspeaker, using two 6BA screws with nuts. Spacers are fitted to the screws between the panel and the case; these are necessary as the component panel could otherwise be damaged as the mounting nuts are tightened. The panel cannot be finally mounted until it has been wired up to the rest of the circuit, as shown in Fig. 2. This wiring is all quite straightforward, and it is not necessary to use screened leads at the input or for the wiring to the volume control.

PICK-UP COIL

As mentioned earlier, the pick-up coil is a 10 mH ferrite cored r.f. choke. This is as made by Repan-

The pick-up coil is a ferrite cored r.f. choke. The centre wire of the screened cable connects to one of its leads and the braiding connects to
co, or equivalent. It is housed in a small Verobox with dimensions of 71.5 by 49 by 24.5 mm . Any other small plastic case which will take the choke could also be employed. The coil is connected to the telephone amplifier by a screened lead which is about 1 metre long, and a small hole for this lead must be drilled in one side of the case. The cable is then threaded through this hole and connected to the choke. The other end of the cable is terminated in a 3.5 mm . jack plug which connects with SK1.

Eventually the choke will be glued in position inside the case, but before this can be done it is necessary to find the correct orientation for it. In order to do this the pick-up coil is placed near the base of a telephone which is reproducing an audio signal (which can be provided by the "Dial-ADisc" facility, or some similar service). The coil is then tried in various positions and orientations in an attempt to find the one which provides the best signal. Note that the process is not merely a matter of finding the position and orientation which provides the greatest audio output. The coil will be sensitive to any stray magnetic field in its vicinity, and it therefore tends to pick up a certain amount of mains hum. It should be possible to adjust the coil both to obtain a strong audio output signal and to null any interfering mains hum.

When the optimum location has been found, the pick-up coil is glued into its case in such a way that it will have the correct position and orientation when the case is suitably placed alongside the telephone base.

With a standard Post Office telephone of the type which is currently being issued the maximum pick-up seems to occur with the coil at the centre of the right hand side of the telephone base. With a Trimphone, maximum signal pick-up appears to be with the coil at the rear of the left hand side of the base, and the output here is comparatively strong.

When using the amplifier unit it is necessary to ensure that the speaker is not too close to the microphone in the telephone handset, and that the volume control is not advanced too far. If these precautions are not observed acoustic feedback will occur, with the characteristic ןloud howl being produced in consequence.

RESISTOR TOLERANCES

By R. Webber

A little tolerance eases many problems.

All quantities in engineering are subject to tolerances. For instance, in a design for an electric motor the optimum diameter for its rotating shaft may be, say, $1 \frac{1}{2}$ inches. However, the engineer working out the motor design cannot simply turn round to the people who are to make the spindle and say: "Please manufacture spindles for this motor which are exactly $1 \frac{1}{2}$ inches in diameter", because they will reply that, in engineering terms, this is impossible. Quite properly they will need minimum and maximum limits to work to. So the engineer has to consider how much on either side of ${ }_{1 \frac{1}{2}}$ inches the spindle diameter will be satisfactory, and he may then say: "Okay, make up the spindles so that the diameter never exceeds 1.505 inch and is never less than 1.495 inch." In other words, he is stating that the spindles should all have a nominal diameter of 1.55 inch with a tolerance on this value of plus or minus 0.005 inch .

A tolerance of plus or minus 0.005 inch, or its near equivalent in millimetres, is quite a standard mechanical engineering tolerance. In fact, many mechanical dimensional tolerances are quite a lot tighter (i.e smaller) than such a figure.

ELECTRONIC TOLERANCES

When we move to electronic engineering, two of the important quantities we meet are resistance and capacitance. It can come as a surprise to those with previous mechanical experience to find that very many electronic circuits incorporating resistance and capacitance are capable of working quite happily with some resistors having values whose tolerances are as high as plus or minus 20% on nominal value and some capacitors with tolerances on value which are even higher than this. In some cases, where a more accurate overall performance is required, electronic circuits may incorporate a pre-set variable resistor (or potentiometer) or pre-set variable capacitor (or trimmer) fitted at one or more strategic positions. The pre-set component can then be adjusted to overcome the small differences in performance which are introduced by the relatively wide tolerance resistors or capacitors elsewhere in the circuit.

So far as the newcomer to electronics as a hobby is concerned, fixed resistors (i.e. those not intended to have their values adjusted) are quite easy to get used to. In this short article we will deal with small fixed resistors having wattage ratings from around $\frac{1}{8}$ to 1 watt.

Until the late 1950's most fixed resistors in this
category were carbon composition types in which the resistive element was a stick consisting of a mixture of carbon particles suspended in a hardsetting plastic material. These were available with a tolerance of plus or minus 20% in values of 10,15 , $22,33,47,68$ and their decades, and in 10% and 5% in the values shown in the Table. These "preferred value" series of numbers are still in use, and those in the Table are known as the E12 and E24 series respectively.

The preferred value system was introduced because, until he had actually made his resistors, the manufacturer of carbon composition resistors wasn't at all certain what values would turn up at the end of his production line! If he aimed at a run of, say, $10 \mathrm{k} \Omega$ resistors, those which fell below this value could conveniently enter a preferred value

Preferred values for 10% and 5% fixed resistors.

10% (E12)	5% (E24)	10% (E12)	5% (E24)
10	10	33	33
	11		36
	12	39	39
15	13		43
	15	47	47
18	16		51
	18	56	56
22	20		62
27	22	68	68
	27		75
	30	82	82
			91

BUY THIS BEST SELLER

NEW EDITION OF
T.V. FAULT FIND|NG 405/625 LINES

REVISED \& ENLARGED

Edited by J. R. Davies 132 pages

PRICE 90p
Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.
Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

Price 90 p from your bookseller.
or post this Coupon together with remittance for $£ 1.10$
(to include postage) to
DATA PUBLICATIONS LTD.
57 Maida Vale, London, W9 1SN

Please send me the 5th revised edition of TV Fault Finding. Data Book No. 5
/ enclose cheque/crossed postal order for

NAME
ADDRESS
with tolerance below $10 \mathrm{k} \Omega$, whilst those which were too high could enter a preferred value with tolerance above $10 \mathrm{k} \Omega$. The beauty of this system is that no resistors are wasted.

These older-fashioned carbon composition resistors, in tolerances nowadays of 10% and 5%, are still with us. They are perfectly good resistors for use in modern circuits, but they tend to introduce noise when employed in such applications as the pre-amplifier stages of a hi-fi amplifier. They are also rather liable to shift in value if they are overcooked during soldering.

At the present time, most retailers to the homeconstructor market sell only the more modern carbon film, metal oxide film and similar types of resistor. These are high stability low-noise components which can be used virtually anywhere. Previously, 20% resistors were the cheapest, 10% resistors more expensive and 5% resistors more expensive again. With modern methods of manufacture, the 20% resistors have virtually disappeared from the scene as, indeed, so far as some mail-order retailers are concerned, have the 10% types in values under $1 \mathrm{M} \mathrm{\Omega}$. There is no point in stocking 10% resistors if 5% resistors are available just as cheaply.

FIRST PUZZLE

And this is the point at which the newcomer to electronics bumps into his first little puzzle. A circuit design published in an electronics magazine may specify a particular resistor as having a value of $100 \mathrm{k} \Omega$ plus or minus 10% (usually referred to as " $100 \mathrm{k} \Omega 10 \%$ "). He looks through his component catalogue and finds that he cannot get a $100 \mathrm{k} \Omega 10 \%$ resistor anywhere because the widest tolerance resistors available are $100 \mathrm{k} \Omega 5 \%$! What does he do? To answer that question fully we go back to the person who designed the project.

When the designer came to that particular resistor in his circuit he checked out the probabilities and said to himself: "Ah now, the circuit will work perfectly well if this resistor has any value between $110 \mathrm{k} \Omega$ and $90 \mathrm{k} \Omega$. In consequence, I'll call it up in the Components List as $100 \mathrm{k} \Omega$ 10%." So, all that the " $100 \mathrm{k} \Omega 10 \%$ " expression means is that the resistor value must lie between these two outside limits of $110 \mathrm{k} \Omega$ and $90 \mathrm{k} \Omega$. It will be perfectly in order to use a $100 \mathrm{k} \Omega 5 \%$ resistor, because its value will lie between $105 \mathrm{k} \Omega$ and $95 \mathrm{k} \Omega$. This is well within the bounds laid down by the designer.
To sum up, it is always correct to use a resistor having a narrower, or smaller, tolerance than that specified in a design.
Some of the more expensive small fixed resistors are available with tolerances of 2% or 1%. These are rather specialised close tolerance types which are mainly intended for circuits having fairly precise functioning, as are given by series meter resistor chains and the like. You could use a 2% or 1% resistor where a 10% or 5% resistor is specified, but you would probably find it too bulky. It will almost certainly be more costly than its wider tolerance brother.

We mentioned capacitor tolerances at the start, but our space is now at an end. Perhaps we will take up the subject of capacitor tolerances at a future date.

LOOKING INSIDE
 SEMICONDUCTOR DIODES

By Michael Lorant

Electron-probe techniques out-perform both optical and electron microscopes

Electronic research engineers of Bell Systems in the United States have developed a novel type of microscopy that uses a beam of electrons as a probe to investigate the structures of semiconductor crystals.

Unlike other electron-probe arrangements, or for that matter the electron miscroscope, which are limited to studies of surface or very thin layers, the Bell technique reveals features within the body of
 the semiconductor through photomicrographs.

Crystal defects are not probed directly by the electron beam. Instead, the secondary charge carriers created by the beam are used, in effect, to project an image of each imperfection on to the plane of a p.n. junction. This image is then reproduced on a cathode ray tube.

The process is non-destructive of the crystal, does not normally require special treatment of the crystal surfaces and has a resolving power higher than that of optical microscopes.

These new photomicrographs reveal both surface and internal structures and allow separate identification of each.

Electron-probes have proved useful in studying crystal defects that may degrade the performance of semiconductor diodes, and they are also leading to greater understanding of crystalline structures themselves.

Electron-probe photomicrographs showing fiternal viows (perpendicular to three dififerent crystial planes) of erystal imperfections in a silicon diode. Magnifications, from top to bottom, are 620, 710 and 800 times. The new electron-probe techniques permit sciontists to look further inside semicanducfor diodes in their studies of internal coystalline defects

SHOOT WMNE NENS FOR DX LISTENERS

By Frank A. Baldwin

$$
\text { Times }=\mathrm{GMT}
$$

Frequencies $=\mathbf{k H z}$

Turning aside from the Broadcast Bands to the Amateur Bands, just for a change of scenery, some stints on Top Band (1.8 to 2.0 MHz) produced the following Dx - all on the key.

- TOP BAND ($1.8-2.0 \mathrm{MHz}$)

DJ2RE, DJ3XK, DK3AX, DK4FM, DL3RQ, EI1AA, EI2BB, EI9J, F3AT, F8EX, F8VJ, GD4BEG, GI3JEX, GI4ABZ, GM3ALK, GM3VPN, GM8CH, GU3HFN, GW3KOR, GW3XJC, GW4FDL/A, HB9BCI, HB9CM, HB9EP, K1PBW, K2GM, K2GNC, K4FU, K4IEX, K9ZUH, LA7Y/EA8, OE5KE, OK1ACB, OK1DCF, OK1DFR, OK2BJJ, OK2PGU, OK4ATQ, OK4ATY, OK5TLG/P, OK8CGS, OH1MA, OH2BG, OH2KA, OH3XZ, PAøHIP VE1CD, VE2BPT, VE2FU, W1BB, W1MX, W2GM, W2PV, WA4SGF, W6MZW/1, W8JI, WB9QCP, YU1BCD, YU3TJA.

The other band tackled over the past few months has been Forty Metres (7.0 to 7.1 MHz) where one has to contend with broadcast station QRM on the grand scale. One way around this (are they any others?) is to go on the band in the very early mornings - and I mean early!

- FORTY (7.0-7.1 MHz)

CO2CM, FM7AV, HK1CHL, J3AAG, KP4RF, KP4WL, PT2WS, PY1WD, PY2XB/PP8. UF6FDJ, UI8LAG, VE3DP, VU2BK, YV4BE, ZD8TM, 4X4GD, 9K2DR.

Finally, a couple of short bursts on both Twenty (14.00 to 14.35 MHz) and Twenty-One (21.00 to 21.45 MHz) resulted in:

```
- TWENTY ( \(14.00-14.35 \mathrm{MHz}\) )
CO2FR, JA1PIG/PZ, KV4AAA, KV4CI, LU9CV, VETALR.
```


- TWENTY-ONE (21.00-21.45MHz)

CX8DT, HZ1HZ, OA4AHA, PJ9CG, VP2SZ, YN1FMQ, ZS2RE.

Now back to the Broadcast Bands.

CURRENT SCHEDULES

- TANZANIA

"Radio Tanzania", Dar-es-Salaam, operates an External Service carrying programmes in English to East, Central and Southern Africa. Some programmes however feature items in Afrikaans
and vernaculars, these being those of the African "National Congress, Pan African Congress and the "Voice of Namibia".

From 0330 to 0500 on 6105 and 15435; from 0900 to 1030 (Saturdays and Sundays until 1530) on 9750 and from 1530 to 1915 on 6105 and on 15435.

- AlBANIA

"Radio Tirana" lists programmes in English to Europe from 0630 to 0700 on 7065 and 9500 ; from 1630 to 1700 on $\mathbf{7 0 6 5}$ and $\mathbf{9 4 8 0}$, from 1830 to 1900 on 7065 and 9485 ; from 2030 to 2100 on 7065 and 9485 and from 2200 to 2230 on 7065 and 9480.

- CHINA

"Radio Peking" operates a service in Amoy, Hakka and Standard Chinese directed to Taiwan on several channels, those of possible interest to the Dxer being listed here.

From 1000 to 1900 and from 2000 to 0130 on 3360; from 1300 to 1900 and from 2000 to 2200 on 3830; from 1115 to 1900 and from 2000 to 2200 on 4770 and from 0958 to 1900 and from 2000 to 2340 on 5125.

The PLA Fukien Front Station radiates to Taiwan and other offshore islands, mostly in Standard Chinese, as follows (Dx interest channels only).

From 1151 to 2359 on 2490 ; from 1216 to 2310 on 3000; from 1300 to 2240 on 3535; from 1300 to 1930 on 3640; from 1000 to 1800 and from 2240 to 0530 on 4045; from 1000 to 1800 and from 2240 to 0530 on 4330; from 1000 to 1259 and from 2241 to 0530 on 5240 and from 1000 to 1259 and from 2243 to 0530 on 5265, all in Network One.

In Network Two from 1426 to 1900 on 2430; from 1257 to 1900 on 2600; from 1000 to 1900 on 3200; from 1200 to 1900 on 3300; from 1000 to 1900 on 3400; from 1127 to 1700 on 3900; from 1101 to 1900 on 4140 ; from 0230 to 1700 on 4380 ; from 0230 to 1600 on 4840 ; from 0230 to 1425 on 5170 and from 0230 to 1100 on 5770.

- MONGOLIA

The Domestic Service from Ulan Bator (First Programme) is on the air from 2200 to 0100 on 5055; from 0100 to 1054 on 5055, 7262 and on 11855 ; from 1100 to 1500 on 4082,4763 and on 5055. The Second Programme is transmitted from 0829 to 1050 on 5960 and on 6385 .

VIETNAM
Radio Hanoi, the "Voice of Vietnam", has scheduled programmes in English for Europe from 1800 to 1900 and from 2030 to 2130 on 7290 and on 10040. The Domestic Service in Vietnamese is broadcast from Ho Chi Min City from 2200 sign-on through to 1530 sign-off on 6165 and on 9620 .

- ROMANIA

"Radio Bucharest" in the External Service presents programmes in English to Europe from 1300 to 1330 on 9690, 11940 and on $\mathbf{1 5 2 5 0}$; from 1930 to 2030 on 6150 and on 7195 and from 2100 to 2130 on 5990 and on 7225.

- CZECHOSLOVAKIA

"Radio Prague" is currently offering programmes in English to the U.K. from 1630 to 1700 on 5930 and on $\mathbf{7 3 4 5}$; from 1900 to 1930 on 5930,7245 and on 7345; from 2000 to 2030 on 5930 and on 7345 and from 2130 to 2200 on 6055.

AROUND THE DIAL

In which are reported some of the interesting stations logged recently, the first being-

- INDIA

AIR (All India Radio) on $\mathbf{7 2 2 5}$ at 1917, YL with songs, local-type music in the General Overseas Service programme in English (except for the songs) intended for East Africa, Western Europe and the U.K., scheduled from 1745 to 1945.

AIR Delhi on 3905 at 1509, local music, YL with songs in the Pushtu programme (Foreign Service) scheduled here from 1430 to 1530.

AIR Delhi on 3925 at 1511, OM with a talk in Hindi in the Home Service.

- SOUTH KOREA

Seoul on 3930 at 1552, OM in Korean announcing local music on records in the Home Service 1 programme, scheduled from 2000 to 1700.

- AUSTRALIA

ABC (Australian Broadcasting Commission) Brisbane on 9660 at 1235, OM in English with sports reports in the Domestic Programme.

- CLANDESTINE

"Voice of the People of Thailand" on a measured 9422.5 at 1431, military music at the opening of the Laotian transmission scheduled from 1430 to 1520. Controlled by the Thailand Communist Party, this transmitter was formerly thought to be located in the Kunming area of Yunnan Province in the People's Republic of China but is now believed to be sited in Ken Thao, opposite Nao Haeo district in the Laotian Province of Loei.

- VIETNAM

Hanoi on a measured 7512 at 1455, YL with songs, local-type music in the Cantonese programme, scheduled from 1430 to 1500 on this channel.
Hanoi on 9840 at 1500, YL introducing the Standard Chinese programme, scheduled from

1500 to 1600 daily.

- SWEDEN

"Radio Sweden", Stockholm, on 21555 at 1342, general discussion in Swedish in the Domestic 1st Programme radiated to embassies, ships and firms abroad in the SSB mode and scheduled on this channel from 0930 to 1600.

NORTH KOREA

Pyongyang on a measured 6576.5 at 1925, OM in Korean to Europe, Near and Middle East and Africa, also heard in parallel on 9977 .

Pyongyang on 6600 at 2139, OM in Korean in the Domestic Service programme, scheduled here from 1500 to 1800 and from 2000 to 0830.

- U.S.S.R.

"Radio Kiev" on 5970 at 1945, station identification followed by a programme for Dxers and Radio Amateurs in the English programme for Europe, scheduled from 1930 to 2000.

- POLAND

Warsaw on 7285 at 1218, YL, with the English programme for Europe, scheduled here from 1200 to 1230 and also in parallel on 6095 .

Warsaw on "9525 at 1237, OM with the programme "Inside Poland" in the English programme directed to Africa, scheduled from 1230 to 1300 on this frequency and in parallel on 9675,11840 and on 15120 .

- FINLAND

Helsinki on 15260 at 1303, OM with the local news in English in the service to Europe, North America and the Far East, scheduled from 1300 to 1325 on this channel and in parallel on 11755 and 15105.

- AUSTRIA

Vienna on 9770 at 1233, YL in English to Europe, South East Asia and Australia. Also to be heard in parallel on 6155, 11790 and on 17775 .

- CHINA

PLA (People's Liberation Army) Fukien Front on 3535 at 1925, discussion in Chinese in a Network 1 programme for Taiwan and Offshore Islands, scheduled from 1300 to 2240.

Radio Peking on 3920 at 1549, Chinese music, OM announcer in the Domestic 1st Programme, scheduled here from 1100 to 1735 and from 2000 to 0100.

Wuhan on 3940 at 1555 , violin music localstyle, YL announcer. Schedule is from 0300 to 0730,0850 to 1605 and from 2100 to 0100.

Radio Peking on 6540 at 1439 , OM with programme to Cambodia, scheduled from 1400 to 1500.

NOW HEAR THIS

FR3 Cayenne, French Guyana, on a measured 4972 at 0250, YL with announcements in French and off with National Anthem. The schedule is from 0900 to 0200 (variable sign-off) weekdays, 0900 to 0300 on Saturdays, Sundays 1000 to 0200 but can close anytime from 0100 . The power is just

QSL CARD
 DISPLAYING

By T. F. Weatherley

I do it, you do it, even OA's in Peru do it. We QSL. In return we receive QSL cards. At first they are displayed as received, haphazardly, on the shack wall - then the door then the ceiling and then - and then what do we do with them? We stick them in the drawer. Yes we mean to sort out the best, the most exotic, the rarest and display them well, but somehow old Bill's from the next street stays on the wall and the rare stuff stays in the drawer.

It was while wondering what to do with a stack of cards that the author decided to display the different styles of QSL. Some were purely functional, some artistic, some funny and some, well some were just QSL cards.

The functional cards like the author's own are just that - a large call sign and space for the contact and station details. Neat and tidy but scarcely art. Let's look now at some of the alternatives. The ex-
amples are all from the author's collection and lose something when reproduced in black and white.

G3WDI

The view card, VE1TG's is an example, has the call and loca-

tion printed over a view of the home state, town or village. Sometimes instead of the photograph there is a line drawing. The Hungarians have a series of 36 line drawings of castles to use as cards and the one from HA8VT is one such. The avid HA worker can collect the whole set of 36. This achievement is marked by the award of a 'Gold Degree.'

9J2DT card shows a variation of this style. An animal indigenous to the country is used. The card, supplied by the Zambia Tourist Board, carries 'Greetings from Zambia' on the back. Thus the QSL spreads goodwill and is an advertisement for the country of origin.

Hungarian Castle Series № 16

When the author was newly licensed, ten metres was wide open and contacts with UA's were 'ten a penny.' A large number of QSL's resulted. These cards form an interesting record of the Russian Space researches over the years from Gargarin in 1961 to Lunik 1966, Venura probe 1967, Soyoz 4 linking with Soyoz 5 in 1969, and the Luna 10. The only card showing the American moon mission was one from a DB station. Other Russian cards show 'heroic' scenes but one or two show 'folk' heroes. I am curious to know the origin of the character shown on one card as he looks most un-Russian, almost like an English squire.

> by Sir Douglas Hall, K.C.M.G.

Part 1 (2 parts)

A really unique a.f. amplifier.

This little amplifier which, complete with speaker, is in a case measuring about $4 \frac{1}{2}$ by $3 \frac{3}{4}$ by $1 \frac{1}{2} \mathrm{in}$., can be carried in a jacket pocket. The output is 100 mW , and the input will match impedances of up to 1 M a with full loading at less than 500 mV at that impedance, whereupon good results can be obtained with a record player equipped with a high output crystal cartridge. Since the amplifier is essentially a mono type, a compatible cartridge is suggested, and an Acos GP91-3Sc will do nicely. For the cost of two extra components, a dual input version can be built giving an alternative input for impedances from 100Ω or less up to about $2 \mathrm{k} \Omega$. Sensitivity, in terms of input voltage, is considerably higher at the low impedance because one of the extra components is a 1:25 step-up transformer.

The speaker is a 3 in . type and, obviously, hi-fi results cannot be expected. Nevertheless, a pleasing output at a volume sufficient for most ordinary rooms is given.

A STRANGE DEVICE

The circuit is shown in Fig. 1(a), and it will be seen that it incorporates what, to some readers, may well be a strange device - a pentode valve. The valve offers quite a number of advantages in the circuit, including a high input impedance at its control grid and a consistent amplification factor between valves of the same type number.

There is not the spread in gain that is offered by high input impedance semiconductor devices, and which has to be controlled by extra stages and negative feedback. The amplifier circuit is extremely simple, as is at once apparent, and all units built to the circuit will offer the same performance. The DL96 specified has a filament, whereupon there is no separate cathode to warm up after
switching on. When connected as shown in the diagram, this filament requires 2.8 volts at 25 mA .

There is a simple top-cut tone control at the input, this consisting of R1, VR1 and C1, and these components are followed by the volume control, VR2, the slider of which connects direct to the control grid of the valve. There is a similar direct connection between the anode of the valve and the base of the transistor, and the anode current of the valve is also the base current of the transistor. The transistor collector current-heats the valve filament and. then passes through R2 to provide grid bias, with C 2 functioning as an a.f. bypass capacitor. There is a d.c. negative feedback stabilizing loop here: if the base current of the transistor tends to increase for any reason so does its collector current, the pentode bias voltage across R 2 increases in consequence, thereby reducing the anode current and counteracting the increase in transistor base current.

The final output is taken from TR1 emitter, with the transistor functioning as an emitter follower. A high impedance speaker is used, which obviates the need for an output transformer.

Some readers will have already observed that the transistor cannot function without base current and that the valve cannot pass anode current until the filament is heated by the transistor collector current. How, therefore, does the amplifier start up? The answer is to be found in the zener diode D1. When the on-off switch S1 is closed, full-wave rectification takes place through D3 and D4, with C3 acting as a reservoir and smoothing capacitor. Despite the fact that the valve does not initially pass anode current, there is a direct current path across C3, this being given by the speaker speech coil, D1, the filament of V1 and R2. For the moment we will assume the use of an 80 n speaker. On first switching on, a direct voltage of 16 volts is formed across C3, and about 20 mA of direct

COMPONENTS

Resistors

R1 $100 \mathrm{k} \Omega \frac{1}{4}$ watt 10%
R2 $22 \Omega \frac{1}{4}$ watt 10%
VR1 1Ms2 potentiometer, \log (see text)
VR2 1M Ω potentiometer, log, with switch S1 (see text)
Capacitors
C1 $3,300 \mathrm{pF}$ disc ceramic or ceramic plate
$\mathrm{C} 2470 \mu \mathrm{~F}$ electrolytic, 6 V . Wkg. (see text)
C3 $1,000 \mu \mathrm{~F}$ electrolytic, 25 V . Wkg. (see text)
Transformers
$\mathrm{T1}$ mains transformer, secondary $20-0-20 \mathrm{~V}$ at 30 mA , type MT241CS (Douglas)
T2 microphone transformer type TT53 (Repanco - see text)

Semiconductors

TR1 BFR81
D1 BZY88C12V
D2 BZY88C2V7
D3 1N4001
D4 1N4001
Valve
V1 DL96
Switch
S1 d.p.s.t. toggle, part of VR2
Sockets
SK1 3.5 mm . jack socket
SK2 3.5 mm . jack socket (see text)

Speaker

LS1 120Ω or $80 \Omega, 3 i n$. or $2 \frac{3}{4} \mathrm{in}$. (see text)
Miscellaneous
B7G valveholder
Spindle coupler (see text)
6 brackets, Lektrokit LK2331 (see text)
2 knobs
3 -core mains lead
Materials for case and "chassis" (see text)
Wire, solder, etc.

(c)

Fig. 1(a). The circuit of the "Micro-Amp" amplifier in its single input form (b). A second jack socket and a step-up transformer are incorporated at the input for the dual input version
current flows, causing voltage drops of 1.6 volts across the speaker, 12 volts across D1, 2 volts across the filament and 0.4 volt across R2. The 2 volts across the filament is enough for this to commence emission and for anode current to flow. This current flows into TR1 base and TR1 collector current rises rapidly to its final value, causing increased current to be drawn from C3. The voltage across the valve filament increases until it is limited to about 2.7 volts by zener diode D2.

Under these conditions there is now a little in excess of 30 mA drawn from C3 and the voltage across it falls to 14 volts. The voltage drops across the components are now about 2.6 volts across the speaker, 2.7 volts across the filament and 0.7 volt across R2, leaving 8 volts across the conductive transistor, TR1. Since D1 is rated at 12 volts it will offer virtually infinite impedance at 8 volts and it plays no further part in circuit operation, its only task having been to cause the circuit to start up after switching on.

If a speaker with a 120Ω speech coil is used the currents will be slightly lower, but the same general effect will take place. Although the description of circuit start-up has been lengthy the actual process is short, there being only a slight delay due to the fraction of a second needed for the filament to heat up.

Fig. 1(b) shows the optional dual input circuit, which allows a second low impedance input to be applied. T2 is a $1: 25$ step-up transformer with its small winding connected to the low impedance input jack socket, SK2. Its large winding connects to the amplifier high impedance input via the break contact of SK1. Inserting a jack plug into the high impedance socket then automatically removes the transformer winding from circuit. Since colour coding of the transformer type employed for T2 seems to be inconsistent, its two windings have to be identified with the aid of a multimeter switched to an ohms range. The small winding connected to the low impedance input socket will, of course, have a much lower resistance than the large winding.

COMPONENTS

Some comments are required concerning the components. Apart from normal retail sources, the valve type DL96 can be obtained from mail order suppliers who specialise in valves. The transistor
type BFR81 is also available from several suppliers, including Electrovalue Ltd. The two potentiometers need to be small in physical size and those used in the prototype were type P20 with a body diameter of 0.79 in . The electrolytic capacitors employed for C 2 and C3 were Siemens axial lead components. Both the capacitors and the P20 potentiometers can be obtained from Electrovalue Ltd.

The author's amplifier employs a 120Ω in. speaker obtained from Radio Component Specialists, 337 Whitehorse Road, Croydon, and this speaker is the preferred type. An alternative is the Eagle 80Ω speaker type TP26G, which is available from a number of stockists. Whatever speaker is used it should be obtained before starting on the constructional work to ensure that there are no discrepancies in the dimensions of the "chassis" parts. The TT53 transformer specified for T2 can be obtained from Home Radio (Components) Ltd. It should be noted that this transformer is only required if it is intended to build the dual input version of the amplifier. Similarly, jack socket SK2 is only required for the dual input version.

Six angle brackets, Lektrokit Cat. No. LK-2331 are needed. A spindle coupler, which allows a $\frac{1}{1}$ in. spindle to be extended by adding a further length of $\frac{1}{6} \mathrm{in}$. spindle, is also required. A suitable type can be obtained from Home Radio.

The mains transformer is a Douglas Code No. MT241CS and this can be obtained from stockists of Douglas transformers or direct from the manufacturer at Douglas Electronic Industries Ltd., Eastfield Road, Louth, Lincolnshire, LN11 7AL.

CONSTRUCTION

The components are mounted on a "chassis" consisting of the parts shown in Figs. 2(a), (b), (c) and (d). The material is $\frac{1}{8}$ in. thick s.r.b.p. sheet or similar, and the two side pieces of Fig. 2(a) and (c) will be secured to the item of Fig. 2(b) by means of four of the Lektrokit angle brackets. The parts shown in Figs. 2(a), (b), (c) and (d) should now be cut out and drilled. All the holes A to L inclusive, together with holes Q, S and T, are drilled $\frac{1}{8}$ in. diameter to take 6BA bolts. With the exception of

Holes A-L.Q.T, $1 / 8^{\prime \prime}$ csk, on underside
(a)

(d)

Fig. 2d

(e)
(b)

(c)

Section of valveholder
cut off

Fig. 2(a). One of the end panels of the amplifier "chassis" (b). The main panel, on which the speaker and mains transformer are mounted (c). The other end panel. The input jack socket is mounted at hole N, and VR1 at hole P. The extended shaft of VR2/S1 passes through hole M (d). The item on which VR2/SI is mounted (e). Part of the B7G valveholder is cut away, as shown here (f). Three of the Lektrokit brackets are filed down (g). The part of Fig. $2(d)$ is fitted to one of the filed down brackets. After assembly, the height of the bracket is adjusted so that the large hole is approximately at the same level as hole $M(h)$. The valveholder is secured to another of the filed down brackets (i). Two holes N are required for the dual input version
hole S, they are all countersunk on the underside (as presented in the diagrams, where what may be assumed to be the top side is shown). Holes D and E will be used for mounting the mains transformer, and they may be checked against the actual component before drilling. Holes G, H, J and K correspond to the four mounting holes of the R.C.S. 120Ω speaker. The holes are still required if the Eagle 80Ω speaker is used, but this speaker does not have mounting holes and is affixed to the section of Fig. 2(b) with adhesive. The round speaker aperture should also be smaller in diameter to suit the Eagle speaker when this is employed. Holes M
and N are $\frac{1}{4} \mathrm{in}$. in diameter and holes P and R are $\frac{3}{8}$ in. in diameter. It should be noted that Fig. 2(c) shows what is required for the single input version of the amplifier; two holes N are needed for the dual input version, these being positioned as shown in Fig. 2(i).

The B7G valveholder is filed down to the appearance illustrated in Fig. 2(e), after which three of the Lektrokit brackets are filed down as shown in Fig. 2(f). The part of each bracket which is filed down is that having the elongated and not the round hole. The item of Fig. 2(d) is then bolted to one of the filed down brackets by means of a

6BA bolt and nut, in the manner shown in Fig. $2(\mathrm{~g})$. It is on the outside of the bracket, i.e. on the side opposite the bracket section with the round hole. The bracket will later be secured at hole G, whereupon VR2/S1 can be mounted in hole R with its spindle (extended with the aid of the spindle coupler and a further length of $\frac{1}{4} \mathrm{in}$. shaft) passing through hole M. This arrangement is shown in Fig. 3(b). The valveholder is next secured, with a 6BA bolt and nut, to another of the filed down angle brackets, as illustrated in Fig. 2(h). The valveholder is on the inside of the bracket. As is shown in Figs. 3(a) and (b), this bracket will be

Fig. 3(a). Side view of the amplifier assembly
(b). Top view of the amplifier before wiring
mounted at Hole H , allowing the valve to lie horizontally on the opposite side of the speaker magnet to the spindle of VR2/S1. The bolts securing these last two brackets pass also through the speaker frame when the 120Ω speaker is used.
The remaining four angle brackets are employed to secure the sections of Figs. 2(a) and 2(c) to that of Fig. 2(b). The third filed down bracket is fitted at hole K, to give clearance for VR1 at hole P. The round holes of all four brackets are those secured to the item of Fig. 2(b), and the bolts which pass through the holes J and K also pass through the speaker frame when the 120Ω speaker is employed.

Components may now be fitted as in Figs. 3(a) and (b). All 6BA mounting bolts should be countersunk types. A solder tag is secured under one of the mounting nuts for T1. If the 120Ω speaker is used. a second solder tag is secured under its mounting nut at hole H. The valve is not inserted in its socket at this stage. Hole T, which has not been referred to, apart from stating that it is drilled $\frac{1}{8}$ in. diameter, will be used to secure a clamp for the mains lead. If the dual input version is being built, jack socket SK1 may be fitted at the hole N which is nearer VR1. VR1 also requires a slight modification for the dual input version, and details of this will be given in Part 2. The extra $\frac{1}{4}$ in. shaft for VR2/S1 can conveniently be the excess which is cut off the spindle of VR1.

NEXT MONTH

Constructional information will be completed in next month's concluding article, which will start by giving details of wiring up.
(To be concluded)

PLEASE MENTION RADIO \& ELECTRONICS CONSTRUCTOR

"It's this mate of mine" proffered Dick.

Smithy raised an eyebrow.
"Yes?"
"Well," continued Dick, "he's dead keen on short wave listening. And he's asked me to knock up an aerial tuning unit for him."
"That," commented Smithy, "shouldn't be too much of a problem. So far as I can remember there was a design for an aerial tuning unit recently in Radio \& Electronics Constructor.
"That's right," confirmed Dick. "In fact I'm basing the one I'm making for my mate on that design.'

AERIAL TUNING UNIT

"Working from memory," stated Smithy thoughtfully, "all that you'll need for the aerial tuning unit is a tapped coil with two variable capacitors down to earth at either end. The aerial connects to one end of the coil and the receiver aerial input connects to the other end. Or, rather, to the portion of the coil which has been tapped into circuit." (Fig. 1.)
"Exactly," said Dick. "The Radio \& Electronics Constructor design had eight taps into the coil but I've added another two to make it ten taps overall. Which fits in very nicely with a 2 -pole 10 -way rotary switch which my friend happens to have on hand. One of the poles switches the taps in the coil."
"And that," remarked Smithy, "leaves you with a second 10 -way rotary switch section which has nothing to do."
"That's my problem."
Puzzled, Smithy reached for his tin mug and drank deeply. It was the Workshop lunch break and, as always, Dick had managed to direct the conversation to matters technical.
"How do you mean, that's your problem?" asked Smithy, turning to his assistant. "If you have a 1-pole 10 -way switch section with nothing to do, you simply make no connections to it."
"That's what I intended doing at first," said Dick morosely. "Then I
had what I thought at the time was a really bright idea. I decided to couple that switch section to a 7 segment l.e.d. display so that it would show a different number, from 1 through to 9 and then 0 , for each switch position in order."
"Very good," commended Smithy. "Your aerial tuning unit would look really effective and technical if it had an l.e.d. display showing the coil tap switch positions. It will be a bit expensive, though, if you power the display from a battery."

Fig. 1. Dick's short wave aerial tuning unit. He proposed to use a second pole of the 10 -way rotary switch to light up a 7 -segment l.e.d. display so as to form the numbers 1 through 9 to 0 . (Constructional details of an aerial tuning unit - with 8 taps in the coil - were given in the January 1977 issue)

Fig. 2. The segments and decimal point for the TIL302, together with the pin connections. The pins point away from the reader
"The supply for the l.e.d. display "raises no difficulties," said Dick. "I've fitted a little mains supply which gives about 9 volts d.c. at several hundred milliamps. What's got me baffled is the circuit that's needed between the switch and the display. So far as I can make out, it's impossible to control a 7 segment display from a single-pole 10-way switch!"
"Oh, come on," snorted Smithy. "It should be a piece of cake."
"Well, it isn't, and I'm beginning to think that it simply can't be done. Here, take a look at the circuit I've worked out up to now."

Dick rose from his stool, picked up several sheets of paper and walked over to Smithy's side.
"For starters," he went on, handing one of the pieces of paper to the Serviceman, "here's the data on the pinning for the display I'm going to use. It's a common anode display type TIL302, which is much the same as any other small common anode display."

Smithy examined the paper (Fig. 2.)
"This is quite a standard sort of display," he said. "You connect the anodes to a positive supply rail, and you switch on whatever segments you need for each figure by coupling the cathodes to the negative rail via series current limiting resistors."
"That's right," confirmed Dick. "In fact, I've made out a list of the segments which have to be lit for each of the numbers.'

He handed a second piece of paper to Smithy. (Fig. 3.)
"All this is very straightforward," said Smithy as he looked down Dick's list of segments. "I see you've left yourself two options for the figures 6 and 9 . They can be either with or without a tail at the top or the bottom."
"I'm beginning to wonder why I even bothered to think about
numbers as high as 6 and 9 ," said Dick disconsolately, as he gave Smithy a third and final sheet of paper. "Here's my switching circuit so far, and it. hasn't even got beyond figure 2!"

STEERING DIODES

Smithy glanced at Dick's attempted circuit, and a gleam of amusement crossed his face. (Fig. 4 (a).)
"How," he asked gently, "is this supposed to work?"
"Well," explained Dick, "at first sight everything seemed very obvinus. As you can see, I'm going to use $1 \mathrm{k} \Omega$ series current limiting resistors for each segment cathode. Now, the general idea is that on position 1 of the switch the negative supply rail couples to segments B
and C to give figure 1 . Then on position 2 the negative rail couples to segments B, A, D, E and G. But. as soon as I'd drawn the circuit up to this stage I realised that it couldn't possibly work."
"Why not?"
"Because you'd switch on all the segments B. C. A. D. E and G with the switch either at position 1 or position 2. You'd be bound to, because all the negative ends of the $1 \mathrm{k} \Omega$ limiting resistors join together at contacts 1 and 2 of the switch. For the life of me I just can't see how you can get over the problem. Tn switch the 7 segments you need a 7-pole switch!"
"Here, take it easy," chuckled Smithy. You can control the 7 segments fairly easily with a singlepole rotary switch, and all you have to do is to insert steering diodes in the feed to each segment. Like this."

Smithy took out his pen and add: ed seven diodes to Dick's circuit (Fig. 4(b).)
"How," asked Dick suspiciously, "do those work?"
"They isolate the switched-on segments from the other segments," explained Smithy. "When the switch is in position 1 , segments B and C are lit up via their series resistors and, now, via their series dindes. At the same time, the second diode down prevents the negative voltage applied to segment B being passed to segments A, D, E and G. So, only segments B and C light up."
"I don't quite get this," said Dick unhappily. "Also, does this steering diode business mean that you need a series diode for every connection to cuery segment?"

Sinithy leaned over, pulled his note-pad towards him and commenced to sketch out a circuit.

Number Displayed	Segments Lit
1	BC
2	ABDEG
3	ABCDG
4	BCF G
5	ACD F G
6	CDEFGorACDEF G
7	ABC
8	ABCDEF
9	ABCFGorABCDF G
0	ABCDEF

Fig. 3. The l.e.d. segments which are lit to display numbers from 1 through to 0 . There are two options for 6 and 9 according to whether these numbers have a "tail" or not

Fig. 4(a). Dick's first attempt at wiring the 10 -way switch to select numbers 1 and 2. Naturally, all six segments light up at both the switch positions
(b). The segments can be isolated by inserting series steering diodes, as here
"In a practical circuit of this type," he stated, "you don't need a steering diode for every segment connection. If you use a few common-sense rules you can reduce the number of dindes required by selecting groups of segments which recur with different numbers. In a few instances you can even omit some of the diodes altogether. Let me give you a simple example of how the diodes work."

Smithy had now completed the circuit and he showed it to Dick. (Fig. 5(a).)
"Here's a little demonstration of what I mean," he continued. "Let's assume that we have a single-pole 3 -way switch and that we want it to light up segment A at position 1, segment B at position 2 and both segments A and B at position 3. I've drawn out the circuit without diodes, in the same way that you draw up your circuit. Tell me what will happen with this circuit as it stands."
"The same sort of thing that would have happened with mine. Both segments will light up at switch positions 1,2 and 3 because, if you trace the circuit through, the left hand ends of both the current limiting resistors are all joined together at these switch contacts."
"Very good. I'll now add a diode in series with each switch contact and the associated current limiting resistor. Like this."

Smithy redrew the circuit with the diodes incorporated. (Fig. 5(b).)
"I'm beginning to see what you're driving at, Smithy," said Dick intently, as he studied the circuit. "Now, when the switch is at position 1, segment A is lit up via D1 and the series resistor. But segment

B can't light up because D3 is reverse-biased."
"You're getting the idea."
"Then," said Dick, his excitement rising, "if you put the switch to position 2, segment B lights up, but segment A doesn't because it's D4 which is now reverse-biased. And when you go to position 3, both segments A and B are lit up because D.3 and D4 are now forward-biased and can pass current. Hey, Smithy, these steering diodes certainly clear

(a)

Fig. 5(a). First step in working out a simplo steering diode circuit. It is desired to have segment A lit at position 1 of the switch, segment B lit at position 2 and both segments lit at position 3. As shown here the circuit cannot function correctly (b). If four steering diodes are added, the circuit operates in the required manner
(c). A little thought reveals that two of the diodes are unnecessary and that they can be omitted from the circuit.
up the common connection snags at the switch contacts!"

Dick's gloom had completely vanished as he considered the vistas opened up to him by the steering diodes.
"I haven't finished yet," grinned Smithy, drawing a further circuit. (Fig. 5(c).)
"You've taken out two of the dindes!"
"That's right," agreed Smithy. "In this particular switching

(b)

(c).

THE

MODERN BOOK CO.

Largest selection of English \& American radio and technical books in the country

19-21 PRAED STREET

 LONDON W2 1NPTel: 01-723 4185/.2926

BEC CABINETS
 [Boook End chassis]

The DUETTE Stereo Amplifier uses our GB1 case ana can be supplied punched or unpunched. The P.C. Boards for this project are also available: For details of this and our standard range of cases send 15 p (refundable) to:
H. M. ELECTRONICS

275a Fulwood Road Broomhill
Sheffield S10 3BD

5,000
 ODDS AND ENDS
 Mechanical Electrical CAT FREE

WHISTON DEPT R.E.C. NEW MILLS, STOCKPORT

Also a postal service
ㄹㄹㄹㄷㅜ
the world of electronics
25 Parmell Street, Wublin 1. Telephone 749972
application, D1 and D2 aren't needed. On position 1, segment A lights up as before, and D3 blocks any circuit through to segment B. It is segment B which lights up at position 2, with D4 blocking the circuit through to segment A. And on position 3 both segments are alight because D3 and D4 are now forward-biased and conducting."

REVERSE OPERATION

With a flourish of triumph, Smithy picked up his tin mug, drained it and handed it to Dick. Following the long-established Workshop custom, Dick took it over to the cracked teapot on the table alongside the Workshop sink for replenishment.
"Well," he said cheerfully, as he returned with the refilled mug, "you've certainly opened my eyes so far as this steering diode business is concerned. As you've shown me, you use the diodes to prevent segments other than those you've selected lighting up. And if you're only lighting one segment at any switch position you don't need a dinde at all. Now let's have a look at that list of segments I made up which have to be alight for each number which is displayed."

Dick picked up the piece of paper he had previously handed over to the Serviceman. As he scanned it, his earlier gloom noticeably reasserted itself.
"What's up?"
"It's all those segments which have to be switched on," wailed Dick. "There must be at least 50 of them, and there are obviously no single segments for any number."
"That means," remarked Smithy, "that at the first attempt at the circuit you'd need about as many steering diodes as there are segments. However, these can be reduced by gating together groups of segments if these repeat sufficient times with different numbers. Even so you'd need, rough check, something like 30 to to dindes."
"Something like to 30 to 40 dindes!" gasped Dick incredulous1v. "Just to switch a 7 -segment display!"
"You could, of course," suggested Sinithy, "drop the idea of using a 7 segment display with this aerial runing unit of yours."
"I can't drop it," moaned Dick. "I've already cut out the hole for it in the front panel!"

Sinithy sipped contentedly at his tea.
"I must say," he remarked dispassionately, "that you're disappointing me quite a bit today."
"How come?"
"Well.". said Smithy "you're usually the guy with the bright ideas. And there's one particularly obvious idea sitting right under vour nose and you haven't even thought of it vet."
"Am I? Is there? Where?"
"Just consider the situation. Here you are, going up and down the agony column and getting vourself all worked up over the number of segments you have to turn on to form the numbers. Why turn the segments on?"
"Why turn the segments on?" repeated Dick. "Dash it all, they've sot to be turned on!"
"Start thinking in the reverse direction."
"I don't follow you."
"At the moment," stated Smithy, "vou're starting with the premise that all the segments are turned off and you then make the further premise that the required ones have to he turned on."
"Hey, what are all these premises vou're dragging in?"
"They're perfectly legitimate premises. Indeed, you could call them licensed premises!"

There was silence for some moments.
"Just," sighed Smithy, "concentrate on the argument."
"Okay then. What you're saying is that I shouldn't think of forming numbers by turning segments on."
"That's right."
A sudden light of comprehension shone in Dick's eyes.
"In other words, I should think of forming numbers by turning segments off."
"Exactly. Assume that all the segments are turned on and that each switch position causes some to be turned off."
"Rlimey," said Dick, impressed. "That really is a new angle. Here, let's make up a new list which shows the extinguished segments for each number."

Eagerly, he picked up his earlier list and, with its aid, made up a second list of the segments which had to be extinguished for each number. (Fig. 6.)
"I) "o you see what I'm getting at?"
"'Gosh Smithy, I'll say I do. The switching requirements are much simpler now. If I assume that the figures 6 and 9 are both to have a tail. I only need to extinguish one segment to get those two numbers. The same applies to 0 . And I don't have to extinguish any segments at all for the figure 8 !"
"Which means." chimed in Smithy, "much fewer steering dindes then would be needed when the switch turns segmenta on. I thould imagine that, when we get down to working out the circuit in detail, we can save a few other diodes as well."

L.E.D. EXTINGUISHING

"One thing I'm not too sure about." said Dick uncertainly. "is how we extinguish the I.e.d. segments by means of the switch instead of turning them on."
"That bit's easy," replied

Number Displayed	Segments Extinguished
1	A D E F G
2	C F
3	E F
4	A D E
5	B E
6	B
7	D E F G
8	None
9	E
0	G

Fig. 6. An alternative approach towards displaying the numbers. Far fewer segments are involved when only those which are extinguished are considered. Figures 6 and 9 are both displayed with a "tail"

Smithy, taking up his pen again. "What we do is to connect all the segments permanently to the negative rail via their current limiting resistors. Like this."
Smithy completed a further circuit and pointed at it with his finger. (Fig. 7.)
"When you switch on the supply," commented Dick, "all the segments light up."
"They do," confirmed Smithy. "One way of extinguishing a segment is to short-circuit it, and this is what I do to segment A when, in my circuit, I close switch S1. The current which flows through $\mathbf{S 1}$ is still limited to a safely low value by the series current limiting resistor. I may alternatively want to shortcircuit a segment via a forwardbiased diode, and this is what happens with S2, D1 and segment B. Or the steering diode requirements may necessitate that I short-circuit a segment via two forward-biased diodes in series, and this state of affairs is given by S 3 , D2, D3 and segment C. Closing S3 causes segment C to turn off.'
"What do you use for the diodes? Silicon rectifiers?"
"Yes, silicon rectifiers. Any small silicon rectifiers such as the 1N4001 or 1 N 4002 would be ideal in a circuit like this."
"That means, then," commented Dick, "that when S3 is closed there will be a voltage drop of about 1.2 volts in D2 and D3."
"True," agreed Smithy. "But the diodes will still allow segment C to he extinguished when $\mathbf{S 3}$ is closed. The segment needs something like 1.8 , volts across it before it turns on."
"Fair enough," said Dick, satisfied with this explanation. "Now, how about a complete display circuit using the single-pole 10-way switch?'"
"That will take a little longer to work out," pronounced Smithy, as he once more took up his tin mug. "Let me get a few calories aboard first, and then I'll get down to it." Smithy drank with gusto, then proceeded to draw the complete switching circuit on a fresh page of his note-pad. Dick watched him as

Fig. 7. How to extinguish segments by means of a switching cir-
cuit. When $S 1$ is closed, segment A is short-circuited directly.
Closing S2 short-circuits segment B via diode D1, and closing S3 short-circuits segment C via the two diodes D2 and D3

GAREX

2-metre RECEIVER NR56: fully tunable $144-146 \mathrm{MHz}$, also 11 xtal positions for monitoring specific channels. Compact, sensitive, ideal for fixed or mobile listening Built-in L.S., 12 v DC operation. $\mathbf{£ 5 4 . 0 0}$ inc. VAT. Crystals, if required: $\mathbf{£ 2 . 5 0}$ each. All popular 2 m . channels in stock. Credit terms available, s.a.e. details. Marine Band Rx $(156-162 \mathrm{MHz})$ similar to NR56.......£59.40
(xtals £2.79)
Relays 6 v coil, 25A contacts, SP make 80 p . $2 P$ make 90 p
Neons min, wire ena,
65p/10; £4/100
Slide Switches min OPDT 18p ea; 5+: $14 p$
2 pole, 3 position $22 p$ each; $5+: 18 p$
Resistor Kits E12 series, 22Ω to $1 \mathrm{M} \Omega$
57 values. 5% carbon film, iW or 1 W .
Starter pack, 5 each value (285) £2.95 Mixed pack, 5 each $\frac{1}{8} W+\frac{1}{4} W(570) £ 5.40$ Standard pack, 10 each (570) $£ 5.40$ Giant pack, 25 each $(1,425) \quad £ 13.25$ I.C's (new) 7410 25p CD4001AE 25p SN76.660 75p NE555 55p 723(TO5) 75p 709 (TO5). 741 (DIL-8) Op.amps 30p: BNC Cable mtg socket 50Ω 20p; $5+: 15 p$ PL259 UHF Plug \& Reducer 68p: $5+: 60$ p: SO239 UHF Socket panol mtd. $55 p ; 5+: 45 p$ Nicad rechargeables physically equiv. to zinc-carbon types: AAA (U16) £1.64; AA(U7) £1.15: C(U11) £3.15: D(U2) £4.94: PP3 £5.20 Any 5+: less 10\%, Any $10+$ less 20%.
We stock amateur V.H.F. equipment and mobile aerials, s.a.e. details.
Distributors for J. H. Associates Ltd.
(switches and lamps)
PRICES INCLUDE UK POST, PACKING \& VAT Mail order only Sole Address: GAREX ELECTRONICS
7 NORVIC ROAD, MARSWORTH.
TRING, HERTS HP23 4LS
Choddington (STD 0296) 668684

MORSE MADE EASY

 BY THE RHYTHM METHOD!

These cowrses. which havo been sold for over 23 years, have bern proved many times to be the fastest method of learning Morse. Youl start right away by learning the sounds of the various lelters. numbers. etc., as you will in fact use thein. Not a series of dots and dashes which later you will have to translate intos lettars and words
Usimg scimmtifically prepared 3 -speed records vint antomatically learn to recognise the isuli. RHYTHM without Iranslating You vaii' hell) it It's as easy as learning a tune 18 W.P.M in 4 weeks guaranteen.
Thu Complate Course consists of three ripiorth is well as instruction books For Complete Course send $£ 5.00$ plus part postage 50p (overseas surface mail f 1 extra).

Now available Shrouded Morse Kevs $\mathbf{£ 2 . 7 0 \text { inc. UK postage }}$
THE MORSE CENTRE
Box 8, 45 Green Lane, Purlay, Surrey. 1 unc:luse f5.00 or large s.a.e. for explanatory booklet.
Name..
Address

Fig. 8. Smithy's final circuit. The diodes can be any small silicon rectifiers, whilst the $1 k \Omega$ limiting resistors may be $\frac{1}{4}$ watt 10% types
the circuit gained shape.
"What did you mean just now," Dick broke in after a minute or so, "when you talked about 'premises'?"
"I was making a play on words," replied Smithy absently.
"Oh."
"You see 'premises' are things you assume at the start of an argu ment or dicussion."
"Are they?"
"And 'licensed premises' are places like pubs."
"Oh."
"It was," grated Smithy, "intended to be a joke."
"Blimey Smithy, you never make jokes."
"So," responded Smithy bitterly, "it would seem."
The Workshop fell silent again, as the now somewhat ruffled Smithy put the finishing touches to his circuit. (Fig. 8.)
"Here we are, then," he announced shortly. "One display switching circuit complete. And I've managed to prune down the number of diodes to 14 only."
"Gosh, that sounds good," replied Dick keenly. "I can see that you've left them out for 6,9 and 0 . Where are the other places where you've left out diodes?"
"The next is at segment C." said Smithy, his irritation disappearing as he regarded his circuit fondly. "Segment C only appears once in the whole list of numbers, and so it doesn't need a diode. I've also made a group of A, D and E, which appear both with number 1 and with number 4, so that saves another diode or two. Segment A
only appears twice in the list, and on both occasions it is partnered with segments D and E, So it doesn't need a diode either."
"Stap me, that's crafty," said Dick enthusiastically. "Let's go through the switch positions from 1 right through to 0 at the bottom."
"You can do that yourself."
"Okay, let's start with position 1, then. At this position the positive supply connection goes through diode D1 to segments A; D and E, segment A being without a diode as you've just mentioned. It also goes through D4 and D5 to segments F and G. So that's got segments A, D, $\mathrm{F}_{4}, \mathrm{~F}$ and G extinguished, to give figure 1."
"That's the figure which requires more extinguished segments than any of the others," commented Smithy. "Position 2 is next."
"Okeydoke. Well, position 2 turns off segments C and F . After that, position 3 causes segments E and F to go out. On position 4, the positive connection goes to the same group, A, D and E, which were extinguished at position 1."
"Also," said Smithy, "diode D1 prevents this positive connection getting through to segments F and f. Position 5 causes segments B and E to turn off, whilst position 6 simply turns off segment B."
"Position 7 follows position 6, and it extinguishes segments D, E, F and G." stated Dick. "The next switch position, at 8. simply has no connections made to it because all the segments are lit for this number. So we end up with positions 9 and 0 . Position 9 extingưishes segment E , and position

0 extinguishes segment G. And that's the lot!"

CURRENT DRAIN

"It is indeed," confirmed Smithy. "And the circuit isn't excessively complex, either. The current drain from the 9 volt supply will be between 70 and 90 mA , varying a little according to the number of segments which are shortcircuited. A current drain of this order is quite acceptable when the circuit is fed by a mains power supply."
"What about supply voltages other than 9 volts?"
"You merely change the values of the limiting resistors to allow the same segment current to flow. At 9 volts, the $1 \mathrm{k} \Omega$ resistors allow a current of about 7 mA to pass through each segment when it's lit. For other supply voltages, simply assume that about 2 volts is dropped in each segment and choose a value which causes about 7 mA to flow. With a 12 volt supply, for instance, you want limiting resistors which cause 7 mA to flow at 10 volts, whereupon these can be $1.3 \mathrm{k} \Omega$ or $1.5 \mathrm{k} \Omega$. They can all be $\frac{1}{~}$ watt types, incidentally."
"Stap me," said Dick enthusiastically, taking up Sinithy's final circuit and carrying it carefully over to his own bench, "vou've certainly cleared up my 7 segment switching problem for me. That aerial tuning unit is going to look really natty when it's got the display in it indicating each switch position. Oh, and ha-ha!"
"What's that for?"
"I've just seen your gag about the 'lighting premises'!"

Radio Topics By Récorder

 *****木木
DOG'S RADIO

Apart from the fact that if I repeated some of the jokes I hear on BBC radio in my local pub I'd prohably get thrown out, I consider that the Beeb has done an excellent job over the years so far as sound broadcasting is concerned. The very strict foundations laid down in the early days by Lord Reith have provided a stabilizing factor which exists right through to the present day. Above all else, the BBC has acquired a world-wide reputation for accuracy and balanced presentation in all its news services including, in particular, those in the World Service which emanate from Bush House.

Thus it was that I greeted the news that we were to have an independent local station in our area a couple of years ago without a great deal of enthusiasm. Now that the station has become established I have changed my mind and am especially pleased with the parochial atmosphere which pervades much of its treatment of local affairs. One item, for instance, which occurs at a regular time each day, provides information on the stray dogs which have been rounded up during the preceding day and which are currently languishing in the local Dngs' Home. Details are given of each dog's approximate age, breed and colouring, together with the district in which it was found.
A broadcast service which can find room for events which may be mildly catastrophic for the dogowner, and which are certainly catastrophic for the dog itself, deserves nothing but commendation.

PROTECTIVE DIODE

I recently knocked up a little a.f. oscillator for a few youngsters who wanted to get in some Morse practice. It was quite a basic affair employing what is now virtually the stock device for items of this nature, the 555 timer. The oscillator was
powered by a PP6 battery which, as you doubtless know, accepts the same sort of 2 -way connector clip as does the diminutive PP3. There wasn't an on-off switch and the oscillator was turned on by the simple process of connecting it to the battery. -

So far so good. As I started working out the Veroboard layout it suddenly occurred to me that the oscillator would be used by some pretty boisterous characters who could quite conceivably touch the connector clip against the battery contacts the wrong way round, so that 9 volts with reversed polarity was applied to the oscillator circuit. The clip couldn't, of course, be properly plugged in wrong way round but even a temporary application of a reversed polarity supply could do quite a bit of damage to the 555 timer. It wouldn't do much good to the electrolytic bypass capacitor across the supply rails, either.
And so I inserted a 1 N 4002 silicon rectifier in series with the positive supply lead. When the battery is properly connected the positive supply current passes through the forward biased rectifier before it hits the electrolytic bypass capacitor and the remainder of the oscillator circuit. If the battery is connected wrong way round all that flows is a tiny and harmless leakage current through what is then a reverse biased silicon rectifier.
Inserting a silicon rectifier in one of the supply leads is an excellent dodge for any battery operated equipment where there is a risk of incorrect connection to the battery. This safety measure incurs a cost of only about 6 p in money for the rectifier and only about 0.6 V in voltage drop when the battery is connected right way round.

AS SHE IS SPOKE

Talking of jargon, there is certainly plenty of it around these days. I'm beginning to think that TV interviews of politicians and the
like are not producing an increase in our vocabulary but are actually causing it to be more and more restricted. Let's take a look at a familiar story from our childhood.

Little Red Riding Hood ventures into the woods to engage in meaningful dialogue with her senior citizen grandmother. Maintaining a low profile to escape the attentions of the wolf she finds what is apparently the old lady in her bed. But this proves to be a non-event because, despite the familiar environment, in no way is the grandmother there in physical presence since the old lady has been in dispute with the wolf before this moment in time. In real terms it is the wolf who, pausing only to state that he regrets any inconvenience, at once makes what is to him a viable attack on the little girl. Finding this counter-productive, she makes good her escape and, hopefully, finds her way into another ball-game.

Perhaps the original was better.

TERMINATING COAXIAI CABLES

One of the more fiddling jobs in television and electronic work is the terminating of coaxial cables. And so, this month, I'll lead in straight away to the first of my photographs, which illustrates one of the Mainliner Range of Lead Extractors, currently available from Eraser International Ltd.
These Lead Extractors automatically eject the centre insulated lead from braided coaxial cables, thereby eliminating the
need to manually unpick the braiding. As you can see, the tool operates with a simple one-shot action, removing the inner conductor cleanly and neatly.

The Lead Extractors are made in a variety of colour coded sizes to process cables with outside diameters from 3.5 to 13.5 mm . If you want further details, these can be obtained from Eraser International Ltd., $2 / 3$ Hampton Court Parade, East Molesey, Surrey, KT8 9HB.

PULSE AND POWER

The second photograph shows the latest development in the Mechtric Engineering line of pulse generator and power supply instruments. This self-contained unit provides essential power supplies and digital signals for electronic circuit development, thereby eliminating the usual cluttered array of bench units.

The instrument is particularly suited for use in the general electronics laboratory, development and test area. It can also prove ideal for Colleges and Universities where, in company with an oscilloscope, it will get most projects under way. The instrument is already being used by a number of leading electronics companies.

Features of the Pulse Generator/Power Supply are a wide range continuously variable pulse generator, three power supplies for t.t.l., CMOS and op-amp circuits, square wave outputs in two phases, no limit to mark-space ratio, gated operation and trigger output, and short-circuit protection for all signal and power outputs.

The power supply outputs all have 0.1% regulation and consist of a 5 volt t.t.l. output at 2 amps maximum, a $4-16$ volt CMOS output at 50 mA maximum, and a $6-21$ volt balanced op-amp output at 100 mA maximum. The pulse rate range is 0.45 Hz to 5 MHz , and the square wave outputs are from 0.45 Hz to 500 kHz with one output leading by 90 degrees. The instrument runs from 240 or 120 volt 50 or 60 Hz mains, and has dimensions of 435 by 90 by 260 mm ,

The manufacturers are Mechtric Engineering Ltd., 12 Brunel Road, Manor Trading Estate, Benfleet, Essex, SS7 4PS.

OLYMPIC GAMES

I see that Marconi Instruments Limited (a GEC-Marconi Electronics Company) has won a contract to supply television quality monitoring equipment for the new television centre being built in Moscow for the 1980 Olympic Games.
Under the contract Marconi Instruments will supply its Television Automatic Monitoring Equipment, TAME, to measure all the incoming signals from the competition areas together with 20 outgoing programme channels from the television centre which, the USSR has stated, will be the largest of its kind in the world.
Engineers from Marconi Instruments, the Soviet state committee for television and radio broadcasting (Gostelradio) and the Soviet Ministry for Com munications Production will be cooperating to engineer and instal the complete system. Soviet engineers are visiting the Marconi Instruments factory at St. Albans in early 1978 to establish compatability between Soviet-made test generators and Marconi Instruments' analysis equipment.
Marconi Instruments first exhibited its TAME system in the USSR at a SIMA exhibition in 1973 and later loaned the equipment to Gostelradio for proving tests on the Soviet television system.
The decision to co-operate on this project was taken at a meeting between Deputy Minister Niemtsov of the Ministry for Communications Production and Richard Foxwell, now Managing Director of Marconi Instruments, in July 1975 following the signing of an "umbrella" agreement between GEC and the USSR state committee for Science and Technology; Since that time Marconi Instruments and Soviet engineers have been planning the system together.
The Marconi equipment is based on a BBC measurement concept and provides quality control by monitoring up to 24 parameters which define the quality of the picture during programme time. The equipment can report continuously or at predetermined intervals and will initiate alarms if quality falls below pre-set limits.

STEEL-CLAD BATTERIES

I was clearing out some junk from the attic the other day when I came across a little makeshift a.f. amplifier I knocked up at least 10 years ago. It was still assembled in a wooden case which just happened to be the right size to take the components and a small loudspeaker and, to be quite frank, I had completely forgotten about it. I was able to determine the time I made it because it was all-germanium except for one silicon diode. The latter was the old Lucas DD000 type, which was one of the first to become available on the home-constructor market.

Also in that wooden case, clamped to one of the sides, was s steel-clad PP7 battery. As a matter of interest I checked its voltage but this was quite definitely a steady zero. For those whose memories are as long as mine, the striking feature of that battery was that it looked just as smart and new as if it had been fitted inthe amplifier case only a month rather than a decade ago. If it had been one of the earlier batteries with cardboard cases it would have been oozing no end of yukky gudge over all its surroundings.

The introduction of these steelclad batteries has certainly paid off in improved performance so far as potential damage to equipment is concerned. Some time after they first became common I recall a report we had from a reader who stated that he had encountered a snag with a steel-clad battery which was secured by a metal clamp to a metal chassis. There was a small leakage current between the internals of the battery and the steel case, causing a current of around a tenth of a milliamp to flow to the chassis. I have never encountered this problem myself but it is something to bear in mind if you are constructing delicate equipment which requires a floating battery supply. It is no trouble at all to play safe and cover the latter with a piece of thin plastic sheet before clamping it to a metal chassis.
"Floating" is of course the jargon term for the battery supply when it is necessary that neither of its terminals should be connected directly to the chassis.

This versatile instrument combines the functions of power supply and pulse generator. Manufactured by Mechtric Engineering Ltd., it provides supplies for t.t.I., CMOS and op-amp circuits, and it has a very wide range of pulse and square wave outputs

Trade News

NEW MULTIPURPOSE HAND TOOL

Designed for the amateur electronics constructor, service engineers or for use in the smaller workshops, the new $58-1908 \mathrm{~K}$ hand tool from Vero Systems (Electronic) Ltd. can perform the complete wire wrapping function. In fact it is three tools in one; it will wrap 0.25 mm (30 AWG) wire , onto standard 0.6 mm (0.025 in) square DIP Socket posts, can also be used to unwrap and has a wire stripper. Price is $£ 6.85$ each.

LATEST IN DE-SOLDERING TOOL RANGE

The latest in the Soldermaster range of de-soldering tools from Charles Austen Pumps Ltd., 100 Royston Road, Byfleet, Weybridge, Surrey, is the Soldermaster Mk. 8. It has been developed to meet the requirements of Engineers who are now using the latest type of boards and components, the rapid advance of technology in this field has brought about many changes in circuit design over the last ten years and their experience with their Soldermaster Mk. 2, 3 and 5 has enabled them to develop the new unit permitting electronic engineers to make substantial savings in materials and time.
The Soldermaster Mk. 8 utilises the same proven vacuum system as earlier models in that the proven Weller 100 watt temperature-controlled iron heats a hollow bit, on which a vacuum is applied at the control of the operator via an airoperated foot switch. The solder is drawn through the bit into a catchpot where it cools and is later removed by removing an ' 0 ' ring sealed cap. The Soldermaster Mk. 8's vacuum source is the Austen M. 361 oil free diaphragm vacuum pump, this has a free flow rate of 15 litres per minute and can achieve a maximum vacuum of 500 mm H.G.

The unit is housed in a blue and grey aluminium case 306 mm wide $\times 235 \mathrm{~mm}$ high $\times 180 \mathrm{~mm}$ deep and weighs 8.2 kg . Removing the front panel reveals the iron rest, iron control, foot switch and holder with a range of five different hollow desoldering tips.

THE MODERN BOOK CO

WORLD RADIO \& TV HANDBOOK 1978

A complete directory of international Radio and Television

Price $£ 8.00$

LEARNING TO WORK WITH
INTEGRATED CIRCUITS
by A. R. R. L.
PRICI: : £2.40 DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS
by A. Michaels PRICE: £2.75
PRINCIPLES OF TRANSISTOR CIRCUITS
by S. W. Amos PRICE: $£ 4.55$
IC OP-AMP COOKBOOK
by W. G. Jung
PRICE: 19.75
ACT:VE FILTER COOKBOOK
by D. Lancaster
PRICE: f 10.80
TV TYPEWRITER COOKBOOK
by D. Lancaster PRICE: $£ 7.30$
IC TIMER COOKBOOK
by W. G. Jung
PRICE: $£ 7.40$
TTL COOKBOOK
by D. Lancaster
PRICE: $£ 6.60$
ELECTRONICS AND RADIO
by N. Nelkon
PRICE: $£ 3.00$
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR
by A. Douglas
PRICE: $£ 4.80$
MASTER TRANSISTOR/IC SUESTITUTION HANDBOOK
by Tab Books No. 970 PRICE: $£ 5.50$

RADIO CIRCUITS EXPLAINED by G. J. King

PRICE: $£ 6.00$
OP-AMP CIRCUIT DESIGN AND APPLICATIONS
by J. Carr
PRICE: $£ 3.90$ BUILD YOUR OWN WORKING ROBOT by D. L. Heiserman PRICE: £3.50 ELECTRONICS AND PHOTOGRAPHY by R. M. Brown

PRICE: $£ 2.20$ MICROELECTRONICS by C. L. Hallmark PRICE: £4.80 125 ONE TRANSISTOR PROJECTS by R. P. Turner

PRICE: £2.10 HOW TO BUILD SPEAKER ENCLOSURES
by A. Badmaieff PRICE: £3.65 110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
by R. M. Marston
PRICE: £2.70
110 THYRISTOR PROJECTS USING SCRs AND TRIACS by R. M. Marston CONSTRUCTOR
by R. M. Marston SYSTEMS
by P. S. Smith

PRICE: $\mathbf{2} 2.70$ CIRCUITS \&

PRICE: £2.00

THE RADIO AMATEUR'S HANDBOOK BY A. R. R. L

PRICE E7.50 BEGINNER'S GUIDE TO COLOUR TELEVISION by G. J. King PRICE: £2.50 BEGINNER'S GUIDE TO ELECTRIC WIRING by F. Guillou

PRICE: £2.50 BEGINNER'S GUIDE TO AUDIO
by I. R. Sinclair PRICE: $£ 3.00$ BEGINNER'S GUIDE TO INTEGRATED CIRCUITS
by I. R. Sinclair
PRICE: $£ 3.00$
RADIO SERVICING POCKET BOOK by V. Capel

PRICE: £3.10
TELEVISION ENGINEERS' POCKET BOOK
by P. J. McGoldrick PRICE: $£ 5.10$ ELECTRONICS POCKET BOOK
by P. J. McGoldrick PRICE: $£ 4.25$
RADIO DATA REFERENCE BOOK by T. G. Giles PRICE: $£ 4.00$ COLOUR T.V. PICTURE FAULTS by K. J. Bohlman

PRICE: £2.75 RECEIVING PAL COLOUR T.V. by A. G. Priestley

PRICE: $£ 5.50$

PRICES INCLUDE POSTAGE
We have the Finest Selection of English and American Radio Books in the Country 19-21 PRAED STREET (Dept RC) LONDON W2 INP

Telephone 01-723 4185

ELEGTROVALIE

All the many types of components we supply are BRAND NEW and guaranteed and only from manulacturers direct or approved suppliers.
No surplus, ne seconds

CMOS - buffered and protected (BE)

4000	23!	4013	5117	4022	113	4041	840	4070	50p
4001	231)	4014	1.07	4023	23!	4042	96 n	4071	26!
4002	$23!$	4015.	1.14	4024	104	4043	1.00	$407 ?$	2613
4006	114	4016	510	4025	-3"	4044	941)	4081	23 n
4007	$23!$	4017	1.14	4026	175	4046	1.40	4082	2611
4008	9919	4018	1.32	4027	+ Un)	4049	5413	4510	42
4009	621	1019	6213	4028	5.51	4050	5317	4511	1.50
4010	62 p	4020	1.32	4029	123	4060	1.40	4516	144
4011	$23:$	4021	1.14	4030	511)	4069	3013	4518	1.26
4012	23:							4520	1.26

OUR COMPUTER TAKES GOOD CARE OF YOÚR OROERS!

SIEMENS CAPACITORS*

World-famous for quality and dependability PCB TYPES
7.5 mm PCM 0.001 to $0.015 p$ each: 0.012 to $0.0686 p$ each. 5 mm PCM $0.17 p$. 0.2210 p .

CERAMIC
 ELECTROLYTICS
$110010^{\prime 2} 5.10 / 63,100 / 25$. ele. For full RESISTORS
$\frac{1}{3}, \frac{1}{2}, \frac{3}{4}$, watts -20 each metal film. metal oxide and I watl carbon 5D each*: Magnetlc field dependant from £1.50. Hall Effect from

SIEMENS TRANSISITORS
Silicon nym and pnp from $8 p$ each: LEDs, red $9 p$: yellow or green $23 \mathrm{p}(3$ or 5 mm): Photo allsistors from 76;
in if list value of order over $\mathrm{£10}: 10 \%$ it list ahm of ordis aver f 25 where cash (P.O.
chequel is sent with order. vith items marked* (No V.A.T. on overseas (thrs) Goud sent nost free on C. W.O. orders U K. over f5 Hst value. If under, add 27 D
MONTHLY BARGAIN LISTS

- AE brinus monthly list of bargains Also

KEEN PRICES - GOOO SERUICE - WIOE RANGES

Barclaycard number.
Barclaycard number. TRADE AND INDUSTRIAL ENQUIRIES INVITED
For all round satisfaction - Be safe -- buy it from ELEGTROVALUE

Dept RC.5. 28 St Judes Rd. Englefield Green. Egham. Surrey TW20 OHB . Phone Egham 603. Tr!ex 264475

SMALL ADVERTISEMENTS

Rate: 10p per word. Minimum charge $£ 1.50$ Box No. 25p extra

Advertisements must be prepaid and all copy must be received b the 4 th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. (Replies to Box Numbers should be addressed to: Box No. Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN.

11-TRANSISTOR METAL DETECTOR, $£ 300$ performance. For illustrated plans send $\varepsilon 1$ (or s.a.e. for details of this, and 20 different plans). J. P. Lucas, 14 Armstead Walk, Dagenham, Essex.

ELECTROLYTIC CAPACITORS. Of assorted values and voltages. 50 for 99p inc. VAT. P. \& P. 10p. Electronic Supplies, 588 Ashton Road, Hathershaw, Oldham, Lancs Telephone: 061-652 9879.

TV REPAIRS SIMPLIFIED. Full repair instructions in dividual British sets $£ 4.50$; request free circuit diagram. Stamp brings details of unique TV publications. Auserec, 76 Churches, Larkhall, Lanarkshire.

WANTED: Large and small quantities of transistors, I.C.'s, displays, etc., etc., Call any Saturday to: 306 St. Paul's Road, London N.1. Telephone: 01-359 4224.

STEREO KITS. Easy build systems and stereograms, Lists. S.A.E. to Nash, 46 Somerset Terrace, Bristol 3.
WANTED: Desk-FAX machine, complete or spare parts, with literature, manuals, etc., in the series TR100/1 and TR102/1, made by Creed \& Co. Ltd. Details to Box No. G335.

VOX KIT TYPE AO3VR. High performance relay output module $£ 9.75$ inclusive. METAL DETECTOR KIT "MD1" (Home Office approved) Supersensitive. Operate with transistor radio, only $£ 3.75$. C.W.O. Other easy-build kits available. 16 p stamps for illustrated catalogue WELLTEX CO., 9 Sirdar Strand, Gravesend, Kent.

ATTENTION SWL'S \& DX'ERS. We specialise in Long, Medium, Short \& VHF(FM) wave band equipment, aerials and books. $1-40 \mathrm{MHz}$ active aerials, 15 dB gain, now available. S.A.E. details and list. Amtest, 55 Vauxhall Street, Worcester, WR3 8PA.

FOR SALE: Complete 9.5 mm cine "Wide screen" outfit Cameras, projector, screen, etc. S.A.E. for details. Box No. G336.

OUTSTANDING 2200 HI-FI FM TUNER. Full coverage $88-102 \mathrm{mHz}$; Varicap tuning. Latest silicon superhet design. Ideal for push button/manual tuning. Only $£ 9.95$ (P. \& P. 50p). GREGG ELECTRONICS, 8688 Parchmore Road, Thornton Heath, Surrey.
FOR SALE: 250 sheets $1 / 32^{\prime \prime}$ copper laminate. Glass fibre centre. Originally manufactured by Taylors for aircraft industry. Would prefer to sell as one lot. But would split into smaller units. $£ 6.00$ per sheet. Telephone: Ash (Kent) 812248.

TURN YOUR SURPLUS Capacitors, transistors, etc., in. to Cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs. Telephone: 0945-4188; Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

TV GAMES

TV games mains adaptor 7.7 V 100ms stabilized £3.25. Fully assembled, attractivaly cased TV games ftennis, football, squash and pelotal:- Black and whit £14.95. Colour £28.95. Modified 'Shoot' kit C4.96. Stunt motor cycle game chlp and economy kit $£ 19.95$. AV-3-8500 £E.50 Kits or Ay-3-8500:- 8lack and white stan dard model £9.60. Economy version £4.85. E12.45. Rifle klt E4.95. Colour generator kit, adds colour to most games $£ 7.50$. Send sae for free giant date.
COMPONENTS
Plastic versions of 8C $108 / 9 \mathrm{5p}$. 2N3055B 37 p . 1 N4 148 2 f p . 1 N4002 5p. Resistors 5% carbon E 12 10 to 10 M . HW 0.95 p . IW 2p.Present pots subminiature 0.1W horlz or vert 100 to $4 \mathrm{M} 78 \frac{1}{\frac{1}{2} p \text {. Potentlometers } 1 \mathrm{~W} ~}$ $4 K 7$ to 2 M 2 log or lin. single 25p. Dual 75 p Polyester capacitors 250V E6 . 01 to $.068 \mathrm{mf} 3 \frac{1}{2} \mathrm{p} .0 .1 \mathrm{mf} 2 \mathrm{p} . .15 \mathrm{mf} 5 \mathrm{p} .22 \mathrm{mf} 4 \mathrm{p}$.33 .47 mf 6p. Polystyrene capacitors E12 63 V 22 pf to $8200 \mathrm{pf} 3 \frac{1}{1} \mathrm{p}$. Coramle capacitors 50 V E6 22 pf to 4700 pf 3 p
Mylar capacltors 100 V .001 .002 . 005 m 4 p . $01.02 \mathrm{mf} 4 \frac{1}{2} \mathrm{p}, .04$. . $055 \frac{5}{2} \mathrm{p}$. Electrolytics $50 \mathrm{~V}, 47$, , 2 mf 5p. 25 V 5mf Ep. 10 mf 4 p . $18 \mathrm{~V} 22 \mathrm{mf} 5 \mathrm{p} .33,47,100 \mathrm{mf} 8 \mathrm{p}$. $220,330 \mathrm{mf} 9 \mathrm{p} .470 \mathrm{mf} 11 \mathrm{p}$. $1000 \mathrm{mf} 8 \frac{1}{2} \mathrm{p}$. Zeners 400 mW E24 2 V 7 to $33 \mathrm{~V} 7 \frac{1}{2} \mathrm{p}$.
MAINS TRANSFORMERS
6-0-6V 100 ma 79 p , 9-0-9V 75 ma 94 p . $12-$ $0-12 \mathrm{~V} 50 \mathrm{ma} 79 \mathrm{p}$. $13 \mathrm{~V}+\mathrm{A} £ 1.10$. 6.3 I 1 A £1.89. $6-0-6 \mathrm{~V}$ I $\frac{1}{2} \mathrm{~A}$ E2.35. $9-0-9 \mathrm{~V}$ । A E1.99. 12-0-12V 100 ma 90 p . 12-0-12V 1A £2.49. 15-0-16V 1A £2.79. 30-0-30 1A 53.59 - $9-9 V 2 A$ C2 80
PRINTED CIRCUIT MATERIALS PC etching kits:- eConomy $£ 1.70$, stendard 3.82. 50 sq ins pcb 40p. 1 lb FeCi $£ 1.05$. atch resist pens:- economy 45p, dalo 73p small drill bit 20p. etching dish 68p laminate cutter 75 p .
S-DECS AND T-DECs ${ }^{\circ}$
S-Dec £2,23. T-DeC £3.98, u-DeCA £3.97. $4-D 0 C B$ © 8.67 . 16 all or $10 T 06$ adaptors:whith socket £1.81. plaln 99p. new S-de-klt £4.95.

LAIR PRODUCTS
PDM digital multimeter $£ 25.95$, mains
daptor 23.29. deluxe padded carry case ©3.25. 30 kV probe $£ 18.36$. Cambridge cientific programmabie calculator $\mathbf{E 1 3 . 1 6}$ Prog. library $£ 4.95$. mains adaptor $£ 3.20$ Cambridge scientific $\boldsymbol{£ 8 , 4 6 \text { . Oxford sclentific }}$ c9.95. IC20 stereo $10 \mathrm{~W}+10 \mathrm{~W}$ Integrated circuit amp klt $£ 6.95$. PZ20 power unlt for e £3.95.
JC12 JC20 AND JC40 AMPLIFIERS
A range of intogratad clrcuit audlo amplifiers supplied with free data and printed clrcults. JC12 6 watts £1.95. JC20 10 watts £2.95 20 watts 24.20 . send sas for free data on our range of matching power and preamp
kits.
FERRANT ZN414
ic radio chip $£ 1.05$, exire parts and peb for radio $£ 3.85$. case £1. send for sae for free date

BATTERY ELIMINATOR

BARGAINS
TV games power unlt stabilized 7.7 V $100 \mathrm{ma} £ 3.25$. 3-way modole with switched output and 4 -way muitl-jack:- $3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ 100 ma £2.92, $6 / 7 \frac{1}{2} / 9 \mathrm{~V} .300 \mathrm{ma} £ 3.30$ 100 me radlo model same size as a PPS bettery, with press stud connectors. 9 V
 £4.50. $6 \mathrm{~V}+6 \mathrm{~V}$ £4.50, $4 \frac{1}{2} V+4 \frac{1}{2} \mathrm{~V}$ £4.80. with 5 pin din plug $£ 2.85$. Fully etabilized model swltched output $3 / 6 / 7 \frac{1}{4} / 9 \mathrm{~V} 400 \mathrm{ma}$ 6.40. Car converters 12 V dc input. output 9 V 300 ma £ 1.50 , output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{ma}$ ع1,50.
BATTERY ELIMINATOR KITS
Send sas for free leaflet on range. 100 m adio types with press stud connectors. $4 \frac{1}{\mathrm{~V}}$
 2.50. $6+6 \mathrm{~V} £ 2.50,9+9 \mathrm{~V} £ 2.50$ Cassette type $7 \frac{1}{2}$, 100 ma with din plug or low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$. 100 ma E3.20. 1 Amp 6,40 . Heavy-duty 13 way $41 / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. Amp £4.66, 2 Amp £7.25, Car convertor alt input 12 V dc. output $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A}$ stablilized. Stablized power kits 3-18V 100 ms .

SWANLEY ELECTRONICS

DEPT, REC, PO Box 68, 32 Goldeal Road, Swanley, Kont BR8 8 TO. Mail order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked *and 11% on others. Official credit orders welcome.

A CAREER INRADIO

Start training today and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.

ICS, the world's most experienced home study college has helped thousands of ambitious men 10 move up into higher paid jobs - they can do the same for you.

Fill in the coupon below and find out how!
There is a wide range of courses to choose from, including

CITY \& GUILDS CERTIFICATES
Telecommunications Techniciarıs' Radio TV Electronics Technicians Electrical Installations Technicians Electrical Installation Work
Radio Amateurs
MPT Radio Communications Cert. EXAMINATION STUDENTS GUARANTEED COACHING UNTIL SUCCESSFUL

TECHNICAL TRAINING
ICS offer a wide choice of non-exam courses designed to equip you for a hetter job in your particular branch of electronics, including Electronic Engineering \& Maintenance
Compuier Engineering/Programming Radio, TV \& Audio Engineering \& Servicing
Elecrrical Engineering. Instaltations \& Contracting

COLOUR TV SERVICING

lechncians fraflud in TV Sorvising are in constant demand Learn all the rechnidues you monet in selvice Colour and Mono TV sets through new home study course apmrivied by lealsing manufacturer
POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

am interested in

Name

Age

Adidiess

Occupation

International Correspondence Schools,
Dept 278T, Intertext House, LONDON
SW8 4UJ or phone 01.622 99:1 (all hours)

LOW COST BOXES AND INSTRUMENT CASES

Blue P.V.C. top
cover with sloping rubber edged front and U-shaped aluminium base. W D H Price

3	4	$1 \frac{3}{4} \ldots 85 p$	$4 \times 3 \times 2 \ldots 66 p$
5	6	$2 \frac{1}{2} \cdot 1.35 p$	$6 \times 4 \times 2 \ldots 62 p$
7	8	3	$1.95 p$
9	10	$3 \frac{1}{2} \cdot 2.90 p$	$8 \times 6 \times 3 \ldots 2 \ldots 997 p$
11	12	$4 \ldots 3.95 p$	$8 \times 6 \times 3 \ldots 1.08 p$

2 Section case Black P.V.C. coated top and aluminium base.

L W H Price
$64 \quad 31.1 .37 p$
8 51 $\frac{1}{2}$ 2 $\frac{1}{2} \cdot 1.50 p$
$106 \frac{1}{2} 3 \ldots 1.95 p$
$8 p$
ALL PRICES INCLUDE P \& P
Sheet aluminium standard and cut to size, self tapping screws, nuts bolts and washers. Pamphlet on our full range of cases supplied with every order or send a stamped self addressed envelope to:
HARRISON BROS. P.O. BOX 55 , WESTCLIFF-on-SEA, ESSEX SSO 7LQ

Manufacturing service of sheet metal parts for trade; send drawing and s.a.e. for quotation.
 ELECTRONICBOOKS

MODEL RADIO CONTRUL
Detailing both Theory and Practice, this book by leading authority Paul Newell, has become the standard reference work. A brief historical survey leads up to a detailed description of proportional systems, with over 100 il lustrations, including theoretical circuits and p.c. layouts for an advanced digital system. 134 pages

Price $£ 2.95$

U.K. Packing

8. Postage

32p

theory and

 practice ofON SALE NOW at all leading shops or direct from:-

RADIO MODELLER BOOKS DIVISION, High Street, Sunningdale,
Berkshire sL5 ONF.

SMALL ADVERTISEMENTS

(Continued from page 571)

FOR SALE: Prinztronic X15 electronic calculator. $£ 3.00$ Box No. G350.

THE RADIO AMATEUR INVALID \& BEDFAST CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. Rita Shepherd, 59 Paintain Road, Loughborough, Leics., LE11 3LZ.

FOR SALE: Astronomy - A handbook, by G. D. Roth, £5.00. Norton's Star Atlas, 16th edition, 22.50 . Astronomical Telescopes \& Observations for Amateurs, by Patrick Moore, $£ 3.50$. Theory and Practice of Model Radio Control, by Paul Newell, £1.25. Radio Control for Model Builders, Wm. Winter, $£ 1.00$. Box No. G351.

U2 TYPE NI-CAD BATTERIES $£ 2.59$ each. 741 's $18 p$ each. P. \& P. 20p. Electronic Supplies, 588 Ashton Road, Hathershaw, Oldham, Lancs., Telephone: 061-652 9879.

FOR SALE: Viscount X125 electronic organ, with separate Leslie speaker. 2 -manual foot pedals, percussion, rhythm box. Matching stool. $£ 475$ o.n.o. T. F. Weatherley, 16 Beverley Court, Carlton Colville, Lowestoft, Suffolk. Telephone: Lowestoft 63216.

COLLECTORS ITEMS. Disposing of early issues of radio magazines. Wireless World: 34 copies from 1943 to 1949. Practical Wireless: 33 copies from 1942 to 1949. Short Wave Magazine: 40 copies dating from 1937 to 1948. Short Wave Listener: 19 copies from 1947 to 1952. All in reasonable condition. Offers invited? Will, sell as four separate lots but not individual copies. Box No. G352.

FOR SALE: Stereo cassette mechanism, £10.00. J. Fulton, Derrynaseer, Dromore, Co. Tyrone, N. Ireland.

INTERESTED IN OSCAR? Then join AMSAT-UK. Newsletters, OSCAR NEWS Journal, prediction charts, etc. Details of membership from: Ron Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London, E12 5EQ.

FOR SALE: Heathkit oscilloscope, Model 10-4540, working and calibrated. 12 months old. $£ 100$. Current kit price £166. L. Wade, 16 Montpelier Road, London S.E. 15 (evenings only).

WANTED FOR R/C MODEL BOATS. Someone to construct three transistorized horns to give realistic sounds suitable for steam tug, steam trawler and launch. Box No. G353.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. - both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., $£ 3.75 \cdot$ per annum. (U.K, and British Commonwealth), overseas $\$ 10.00$ or $£ 4.00$. Secretary ISWL, 1 Grove Road, Lydney, Glos., GL15 5JE.

OFFERS WANTED. For Murphy radiogram, model A24RG, in good condition, but not working. Buyer collects. Box No. G354.

SMALL ADVERTISEMENTS

(Continued from page 572)

THE BRITISH AMATEUR ELECTRONICS CLUB for all who are interested in electronics. Four Newsletters a year with help and special offers for members. Major projects sponsored by the B.A.E.C. designed and made by members, currently the B.A.E.C. Z-80 Computer. Membership fee for $1978 £ 3.50$ U.K., overseas $£ 4.50$ surface mail and $£ 5.50$ airmail, payable in sterling. S.A.E. for details and application form to the Hon. Sec. J. G. Margetts, 42 Old Vicarage Green, Keynsham, Bristol.

LOUD SIRENS. 6 V D.C. For burglar alarms. $£ 1.46$ in clusive. Grimsby Electronics, Lambert Road, Grimsby, South Humberside. Experimenters - Hundreds of items cheap. List 10p.

WANTED: FAX equipment, manuals, service sheets, etc. G2UK, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk, NR32 3PJ.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. - The Holborn Direct Mail Company Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 6444.

WANTED. Copies of Radio \& Electronics Constructor for December 1968, January and March 1969. All replies answered. D. Paton, 4 Patterton Drive, Barrhead, Glasgow G78 2NN.

FREQUENCY LIST TRANSFERS. We have a limited supply of sheets of Dial Frequency Transfers in black. Short Wave frequencies $1.8 \mathrm{Mc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$ and $144 \mathrm{Mc} / \mathrm{s}$ and $146 \mathrm{Mc} / \mathrm{s}$. Includes amateur band marker frequencies at $100 \mathrm{kc} / \mathrm{s}$ points and other short wave frequencies from 2 to $32 \mathrm{Mc} / \mathrm{s}$ at every $500 \mathrm{Kc} / \mathrm{s}$ points. Each frequency is 7 repeated . Two sheets for 5 p ., five sheets for 10p., postage 7 p . Data Publications Ltd., 57 Maida Vale, London, W9 1SN.

COLLECTORS. Radio \& Electronics Constructor October 1956 to October 1977, four copies missing. Offers invited. Telephone: 01-398 1740.

PERSONAL COMPUTING EVENT. 8th April (10-6). Winter Gardens, Malvern. Exhibition of latest systems. Admission 35p. For seminar seats ($£ 2.75, £ 3.75$) rush 50 p deposit to Richard Watkins, C/o:-Glen Kilday, Winter Gardens, Malvern, Worcs. If after April 4th, telephone: Worcester 55658.

PERSONAL

JANE SCOTT FOR GENUINE FKIENDS. Introduc-
tions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: The Hon. Membership Secretary, The Broads Society,
"Icknield," Hilly Plantation, Thorpe St. Andrew, "Icknield," Hilly
Norwich, NOR 85S.

BRAND NEW COMPONENTS

V. W. \& E. SMITH REPAIRS TO ELECTRICAL \& ELECTRONIC MEASURING INSTRUMENTS

Guaranteed repairs to Multimeters - AVO, SEI, Meggers, etc. Scopes, DVM's and all types of equipment. 7-10 day service, collection locally.

Traceable to National Standards

(DP) Service Department: 157 Chapel Street, Leigh Lancs., WN7 2AL
Tel: Leigh (0942) 606674

DIRECT READER SERVICE RADIO \& ELECTRONICS BOOKS

1. 50 PROJECTS USING RELAYS, SCR's \& TRIACS by F. G. Rayer
2. FUN \& GAMES WITH YOUR ELECTRONIC
CALCULATOR by J. Vine
3. 50 (FET) FIELD EFFECT TRANSISTOR PROJECTS by F. G. Rayer
£1.40
4. DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS
by Adrian Michaels
5. 50 SIMPLE L.E.D. CIRCUITS by R. N. Soąr 87p
6. MODERN TAPE RECORDING HANDBOOK
by B. B. Babani
7. THE COMPLETE CAR RADIO MANUAL by F. C. Palmer 87p
8. SOLID STATE NOVELTY PROJECTS
by M. H. Babani
9. 28 TESTED TRANSISTOR PROJECTS
by R. Torrens
£1.07
10. SOLID STATE SHORT WAVE RECEIVERS FOR
BEGINNERS by R. A. Penfold
$£ 1.07$
11. 50 PROJECTS USING IC CA3130 by R. A. Penfold £1.07

12. 50 CMOS IC PROJECTS
by R. A. Penfold
$£ 1.07$
13. HOW TO BUILD ADVANCED SHORT WAVE
RECEIVERS by R. A. Penfold
14. BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Penfold
£1.40
15. 50 CIRCUITS USING GERMANIUM SILICON $\&$
ZENER DIODES by R.N. Soar

To: Data Publications Ltd., 57 Maida Vale, London W9 1SN Please send me within 21 days \qquad copy/copies of
\qquad No.

I enclose Postal Order/Cheque for $£$.
Name
Address

SMALL ADVERTISEMENTS

(Continued from page 573)

ACCOMMODATION available for old people. Pleasant ground floor room, good food and personal attention. Holiday, short or long term. "Rosedene", Market Place. Kessingland, Nr. Lowestoft, Suffolk. Telephone: 0502 740831

REPRESENTATION FOR OUR COMPANY. West Lierman Manufacturer of coaxial cables 60 and 75 ohm, coaxial cables for underground installation CATV and with carrier cables, RG/U-coaxial cables 50,75 and 93 ohm . video-coaxial-cables 75 ohm , microphone, diode and stereo cables, measuring cables, cables for loudspeakers. television and radio aerials 240 and 300 ohm , heat resistant coaxial cables, requires a representation for Great Britain \& Ireland. Box No. G349.

ESSEX GARDENERS. Buy your Bedding and rock plants, shrubs, etc., also cacti from May's Nurseries, 608 Rayleigh Road, Hutton, Brentwood, Essex. Callers only. Monday to Saturday.

SPONSORS required for exciting scientific project. Norwich Astronomical Society are building a $30^{\prime \prime}$ telescope to be housed in a 20^{\prime} dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Norfolk.

BARGAIN OF THE MONTH SIX-GAME AY-3-8500 COLOUR

Rifle 2

Tennis

Football

Rifle 1

Solo Squash

YELLOW BAT, BLUE BAT, GREEN BACKGROUND. NORMAL PRICE $£ 16.50$

BASIC KIT includes AY-3. 8500

Just add
Price inclusive VAT, Post and Packing
RIFLE IS NOT SUPPLIED
Components required to complete project: $2-250 \mathrm{k}$ pots, case, bat tery, rotary switch, speaker, pushbuttons, switches.

- OPEN SIX DAYS A WEEK 10 am to 7 pm 'at 14 Station Road, New Barnet, Heits EN5 $10 W$. (Close to New Barnet BR Station. Moorgate Line)
Make cheques or postal orders payable to Teleplay, send your order (No stamp needed), to Teleplay, Freepost, Barnet, EN5 2BR; or telephone your order quoting your Barclaycard or Access number
Trade Enquiries Welcome

THE DALESFORD SPEAKER BOOK

By R. F. C. Stephens

This book is a must for the keen home constructor. Latest technology DIY speaker designs. Contains full plans for infinite baffle and reflex designs for 10-100 watts, also unusual centre-bass system for those who want hifi to be "heard and not seen". £1.95 (£2.20 post paid. \$5 Overseas).

VAN KAREN PUBLISHING.
5 SWAN STREET, WILMSLOW, CHESHIRE.

START your own "ONE" man ELECTRONICS FACTORY with little or NO Capital Investment.
"DETERMINE YOUR OWN INCOME"
Further details write to:-
C. D. PUBLICATIONS, P.O. Box 44, London SW2 4NN England. Registration London 2187137

PRINTED CIRCUITS AND HARDWARE

Comprehensive range Constructors' hardware and accessories. Selected range of popular components. Printed circuit boards for individual designs. Drawing materials for printed circuits. Resist coated laminate, epoxy glass for the d.i.y. man. Full processing instructions, no unusual chemicals required.

Send $15 p$ for catalogue

Ramar Constructor Services
Masons Road . Stratford-on-Avon . Warwks CV37 9NF

RADIO \& ELECTRONICS CONSTRUCTOR

Single Copies
Price 45p each, p\&p 13p
Issue(s) required.
Annual Subscription
Price $\mathbf{£ 6 . 5 0}$, post free, commence with.

Bound Volumes:

Vo	27	August	1973	to	July	1974	Price	£2.60,	post	d	pkg	p
Vol	28.	August	1974	to	July	1975	Price	£3.00,	post	\&	pkg	90p
Vol	29.	August	1975	to	July	1976	Price	£3.30,	post	\&	pkg	90p
Vol.	30.	August	1976	to	July	1977	Price	£3.70,	post	\&	pkg	90p

(Allow 28 days for delivery of Volume 30)

CORDEX SELF-BINDERS NEW FORMAT

With title, 'RADIO \& ELECTRONICS CONSTRUCTOR' on spine, maroon only - Allow 21 days for delivery Price £1.60, post \& pk̄g 35p With no title on spine, maroon Price $£ 1.50$, post \& pkg 35 p
With no title on spine, green
Price $£ 1.50$, post \& pkg 35 p

SMALL FORMAT $\left(7 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}\right)$

With title, 'RADIO \& ELECTRONICS CONSTRUCTOR' on spine, maroon

Price $£ 1.20$, post \& pkg 30p Prices include V.A.T.

DATA BOOK SERIES

DB5 TV Fault Finding, 132 pages
DB6 Radio Amateur Operator's Handbook. 88 pages
DB17 Understanding Television, 504 pages
DB19 Simple Short Wave Receivers 140 pages

STRIP-FIX PLASTIC PANEL SIGNS

Set 3: Wording - White
Price 75p, P. \& P. 8p
Price $£ 1.00$, P. \& P. 8p
Price 38p, P. \& P. 8p
Prices include V.A.T. on Panel Signs
I enclose Postal Order/Cheque for.
in payment for
NAME
ADDRESS

